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Introduction to Theoretical Ecology 

Natal, 2011 

Objectives 

After this week: 

 The student understands the concept of a biological system in equilibrium and knows that 

equilibria can be stable or unstable. 

 The student understands the basics of how coupled differential equations can be analyzed 

graphically, including phase plane analysis and nullclines. 

 The student can analyze the stability of the equilibria of a one-dimensional differential 

equation model graphically. 

 The student has a basic understanding of what a bifurcation point is. 

 The student can relate alternative stable states to a 1D bifurcation plot (e.g. catastrophe fold). 

Study material / for further study:  

This text 

Scheffer, M. 2009. Critical Transitions in Nature and Society, Princeton University Press, Princeton 

and Oxford. 

Scheffer, M. 1998. Ecology of Shallow Lakes. 1 edition. Chapman and Hall, London.  

Edelstein-Keshet, L. 1988. Mathematical models in biology. 1 edition. McGraw-Hill, Inc., New York. 

 

Tentative programme (maybe too tight for the exercises) 

Monday 

9:00-10:30 Introduction Modelling + introduction Forrester diagram + 1D models (stability graphs) 

10:30-13:00 GRIND Practical CO2 chamber - Ethiopian Wolf  

 

Tuesday 

9:00-10:00 Introduction bifurcation (Allee effect) and Phase plane analysis (Lotka-Volterra 

competition) 

10:00-13:00 GRIND Practical Lotka-Volterra competition + Sahara  

 

Wednesday 

9:00-13:00 GRIND Practical – Sahara (continued) and Algae-zooplankton  

 

Thursday 

9:00-13:00 GRIND practical – Algae zooplankton spatial heterogeneity  

 

Friday 

9:00-12:00 GRIND practical- Algae zooplankton fish 

12:00-13:00 Practical summary/explanation of results - Wrap up 
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An introduction to models 
 

What is a model? 

The word 'model' is used widely in every-day language. It is therefore not surprising that confusion 

commonly arises around the term. A generic definition of a model is 'a simplified representation of 

reality'. This includes descriptions in words (the socialistic world model), physical representations 

(maps, model airplanes) and mathematical models, which we will address in this course. In fact the 

mathematical models have several things in common with word-models or physical representations. 

Perhaps the most crucial common aspect is that all such models leave out many details in order to 

allow us to focus better on some essential aspects. The question which aspects are essential depends 

on what you want to use the model for. This may differ widely, and consequently many very different 

models of the same thing (e.g. a lake) may exist, none of which is 'the best' in a general sense. 

Consider the analogue of the map. Different maps exist for hikers, cars, railways, airplanes, geologists 

etc. They all represent subsets of the real world selected for different purposes. Maps are useful 

because they leave out most of the details. They would be unreadable otherwise. In fact, by definition 

there is only one model, which includes everything: the real world itself. 

This immediately identifies the core of what modeling is about: simplifying. The challenge is to do 

that in the best way, given the goal one has in mind. Broadly speaking, there are two categories of 

goals that one may aim at with the use of mathematical models: prediction and understanding. It is 

widely recognized that these goals require quite different modeling approaches. For prediction of the 

effects of specific human impacts on environmental quality or animal and plant communities an array 

of mathematical model types exist. On one end of the range are the empirical models such as classic 

statistical models and various artificial intelligence approaches such as neural networks and expert 

systems. On the other end there are elaborate simulation models that cover the main processes that 

govern the systems behavior in a mechanistic way. By contrast models that are used in various 

scientific disciplines to help understanding how systems work are usually very simple. These models 

which often appear in scientific front-line literature, are sometimes called 'minimal models' or 

'strategic models' and are meant to reveal possible explanations for observed phenomena. 

In the following sections we first discuss the scope of different types of predictive models and also 

argue that a lack of mechanistic insight in how systems work is typically the bottleneck to good 

prediction. We then turn to a reflection on the fundamental barriers to obtaining a true mechanistic 

understanding of how nature works. Finally, we discuss the type of models used to develop scientific 

insight rather than to predict. 

 

Models for prediction 

In practice, the task of the environmental scientists often boils down to predicting the effect of 

different possible management scenarios. This can be on small scales. For instance, it may be 

important to know how water quality and biodiversity in a lake would benefit from installation of a 

water treatment plant, which reduces the concentrations of nutrients, and other polluting components 

of inflowing water. On the other hand models are used to predict the impact of rising CO2 levels on 

the climate of the entire earth and on ocean currents.  
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Empirical models 

Somehow the most straightforward way of predictive modeling is the use of empirical (or statistical) 

relationships. 

For instance, by studying many rather deep unvegetated lakes it has been shown that the concentration 

of phosphorus in the water of the lakes (P) is related to the concentration of the inflowing water (Pi) 

and the time the water stays in the lake (the so-called hydraulic retention time r) in a predictable way 

(Vollenweider, 1977): 

This empirical 'Vollenweider equation' describes a generic relationship between input and the 

equilibrium concentration in the lake. Note that the lake concentration is always lower than the input 

concentration, due to a net loss of phosphorus with sinking particles to the sediment. The model 

accounts for this effect. It has been used widely to predict the effect of a reduction in nutrient load on 

the concentration in the lake water. After a transient period the nutrient concentration in the lake 

should settle to a new equilibrium value depending on the new input concentration and hydraulic 

retention time in the way described by Vollenweider’s equation. However, there are limitations to the 

model. For instance, shallow lakes in which clarity of the water improves may develop a vegetation of 

submerged plants, which strongly affects the way phosphorus is partitioned between sediments and 

water, making the model in its current form useless. The problem here is one of extrapolation. We 

cannot extrapolate the empirical relationship derived from a certain limited set of lakes to a new 

situation (vegetated shallow lakes). 

More serious than the extrapolation problem, is the problem of erroneous assumptions on causality. In 

the absence of insight in the dominant causal mechanisms, empirical relationships are a highly 

unreliable basis for managing systems. Of course, this is a common notion, but since it is one of the 

main caveats in every day applied science, it deserves some repetition. As a caricatural example to 

highlight the topic once again, consider the relationship between wind and the swinging of trees. One 

could well imagine that swinging trees actually cause the wind: If they stop swinging the wind stops 

also. Such a lack of insight in the functioning of the system becomes a problem if one decides to 

manage the system by cutting down trees in order to reduce the wind. In practice, the caveats of 

applying empirical models for management purposes are often more tricky than the simple cause-

effect exchange in this tree example. The computed values of parameters in statistical models, for 

instance, are dependent on the correlative structure between the used explanatory variables as well as 

the non-investigated but also causally related variables (Montgomery and Peck, 1982). This implies 

that if this correlative structure is affected by a measurement, the model cannot be used for prediction 

anymore.  

The problems of extrapolation and causality apply just as strongly to various sophisticated artificial 

intelligence approaches that relate 'inputs to outputs'. An example is artificial neural networks (ANN). 

These are in fact simple simulation models of real networks of neural cells as they appear for instance 

in the human brain. An ANN adjusts its parameters automatically through a certain algorithm during a 

'training process' in which it is offered inputs (e.g. the handwritten image of a letter) and correct 

outputs (e.g. which letter it is). When offered a new input, a well-trained network gives the correct 
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output. In our example it will be able to interpret handwriting, but ANN's can in principle be used for 

all kind of predictions ranging from ecological problems to stock-market fluctuations and weather 

predictions. It is beyond the scope of this introduction to go into the specific tricky caveats of neural 

networks and other techniques. However, it is important to realize that there is essentially no 

difference between these advanced approaches and classical statistical models in the fact that they 

assume straightforward causality from input to output with all problems of misinterpretation and 

extrapolation mentioned earlier.  

In summary, pragmatic prediction using empirical models may appear attractive, but if we want to 

predict new developments we have no other option than to base our predictions on a mechanistic 

insight in the functioning of the system. 

 

Simulation models 

In many cases we actually know quite a lot about the main processes that drive a system. Therefore, a 

logical approach is to combine all that knowledge into a mechanistic computer model, which can then 

be used to simulate what would happen in different scenarios. For several chemical and physical 

problems on limited scales this is working relatively well. For instance, the effect of discharge of 

cooling water of a power plant on the temperature of a river can be computed well. Moreover, the 

effect of industrial wastewater loaded with various chemicals on the concentration of these chemicals 

in sediments, water and organisms can also be computed reasonably well. By contrast, effects of CO2 

emissions on the climate and the ocean currents are much more difficult to compute. Although 

uncertainty is high in such global circulation models, there is no alternative. It is important to have a 

best guess of our impact on the planet, and we cannot use the empirical approach of trial and error, 

which still is an option for finding out the effect in small scale situations like lake pollution (simply 

look at the effect in a test set of 100 comparable lakes). 

Predictive simulation models also work surprisingly bad for ecological problems. In the early 

seventies there was still a great optimism about the possibilities of constructing detailed simulation 

models for predicting the behavior of ecosystems. Cooperation of groups of experts on all relevant 

biological and technical sub-topics led to models integrating the available knowledge as much as 

possible. The model CLEAN (Bloomfield et al., 1974), constructed as part of the International 

Biological Program research is a good example of this approach.  The model contains a diverse 

spectrum of components like several fish species, algae, zooplankton, aquatic macrophytes, 

invertebrates and nutrients, formulated in 28 differential equations. The idea of such modeling 

approaches was that in the course of the modeling process lacking information could be identified, 

and filled in after additional experimental research. The latter, however, appeared a mission 

impossible. The number of parameters in those complex models is very large, and the value of many 

parameters cannot be determined within a reasonable amount of time, if measurable at all.  

The common solution is to estimate the remaining parameter values by fitting the model predictions to 

field data, so-called 'tuning'. A wide array of sophisticated numerical techniques is available for this 

purpose, and often an impressively good fit is obtained. However, this success is illusive. The 

problem is that a certain system behavior can often be produced from many different parameter 

settings. This phenomenon is nicely illustrated by Simons & Lam (1980) who show that even for 

relatively simple phytoplankton-nutrient models the same patterns can be produced with completely 

different parameter settings and also from totally different models. Obviously, tuning of complex 
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ecological models easily leads to good results for the wrong reasons. A good fit does not guarantee 

any realism of parameter values or model structure. As a consequence, such simulation models have 

basically the same problems as empirical input-output models. The assumed causal relations 

underlying the model need not be true, and therefore extrapolation to new situations easily leads to 

non-sense predictions.  

 

Barriers to a mechanistic understanding of nature 

The classic scientific approach 

The classical scientific way to unravel how the world works is the so-called 'hypothetico-deductive 

reasoning'.  The main ideas were advocated as early as 1620 by Francis Bacon in his Novum 

Organum, and elaborated later by the influential science philosopher Karl Popper. The steps of this 

approach which has also be called 'strong inference' are: 

1) Devising several alternative hypotheses; 

2) Devising a crucial experiment (or several of them), with alternative possible outcomes, each of 

which will, as nearly as possible, exclude one or more of the hypotheses; 

3) Carrying out the experiment so as to get a clean result; 

1') Recycling the procedure making sub-hypotheses or sequential hypotheses to refine the possibilities 

that remain; and so on. 

Although this sounds convincing there are some fundamental reasons why this rigid approach is of 

very limited use in a science dealing with complex systems like ecology. Probably, the most basic 

argument is that strong inference assumes that the competing hypotheses to explain observed 

phenomena are general and mutually exclusive, whereas in complex systems in the real world many 

different entangled causes may contribute to an observed pattern.  

Problems of multiple causality 

Arbitrarily, we consider the problem of multiple causality here on three different levels (Fig. 1). 

 In the first place, we have to face that any observed phenomenon can in theory be explained from 

many different mechanisms. Trivial as it is, this appears hard to keep in mind in every day scientific 

life. The well-known problem associated with it is that one tends to become attached quickly to ones 

own tentative hypothesis causing an inevitable bias in further research. A famous treatment of this 

problem is given in an early paper by Chamberlin (1897) that argues that such affection for ones 

intellectual child is a grave danger as "love was long since discerned to be blind". "There is then the 

imminent danger of an unconscious selection and of a magnifying phenomena that fall into harmony 

with the theory and support it and an unconscious neglect of phenomena that fail of coincidence".  In 

addition to this personal affection problem, there is an interesting intrinsic positive feed-back 

mechanism in scientific discussion that tends to blow up a hypothesis to a paradigm status: Every time 

an idea is cited, it gains momentum, becomes more of a "truth" and is more likely to become cited 

again. A good case study of this problem is described by Elner & Vadas (1990) who analyzed the line 

of research that started in the early 1970s to find the explanation for a population explosion of sea 

urchins and the resulting intensive grazing that converted macroalgal beds into barrens along the 
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Atlantic coast of Nova Scotia. They show how the explanation of this phenomenon as the effect of 

reduced numbers of lobsters (considered a key-stone predator of the sea urchins) became strongly 

dominant despite the lack of convincing evidence, and highlight how results against this explanation 

were circumvented.  

 

 

 

 

Fig. 1. Three levels of complication in ecological causation: 

a) Any observed phenomenon can in theory be explained from many different mechanisms 

b) Different mechanisms may actually be responsible for a similar phenomenon in different cases 

c) Several mechanisms may act simultaneously to produce a certain phenomenon that could in theory 

result from the single ones also. 

 

 A second, equally trivial point to note (Fig. 1) is that the same phenomenon can not only be 

explained from different theories, but is in fact often caused by different mechanisms in nature in 

different cases. A man’s death can be caused by a bullet, by a fall, by bacteria and in many other 

ways. This simple complication of causation already presents a difficulty for philosophers who try to 

define causes and effects in terms of necessary and sufficient conditions (Edwards, 1972).  As an 

ecological example, consider the phenomenon that lakes stay turbid despite a reduction of the 
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phosphorus loading. In one lake this may be due to wind induced resuspension of the sediment, in a 

second lake to a release of phosphorus from the accumulated pool in the lake bottom and in a third 

lake to the impact of the fish community. It is tempting to suggest that a mechanism shown to be 

responsible for a certain phenomenon in a certain case study is the explanation for this phenomenon in 

general, and controversies in scientific discussion arise easily if different parties have different case 

studies in mind. 

The above considerations still address only part of the complication of unravelling ecological 

causation. The full-scale problem comes with the fact that in most real world situations several 

mechanisms act simultaneously to produce a certain phenomenon that could in theory be explained 

from each mechanism alone also. Actually, the above-mentioned causes of lake turbidity will 

practically always co-occur. One of the mechanisms will often dominate, but dominance will differ 

from case to case and may even shift in time. It is remarkable to note that in the extensive 

philosophical literature on causation, this common complication is hardly at all touched (Edwards, 

1972). Multiple causality makes application of the rigid strong inference method to ecology of little 

use since, as Quin & Dunham (1983) note, "it is not possible to perform 'critical tests' to distinguish 

between the 'truth' of processes occurring simultaneously". Multiple causality makes the clean 

deductive style of reasoning popular among philosophers of science seem futile. The question is not 

whether a mechanism acts, but rather how important it is in causing an observed phenomenon. 

Ockham's Razor (adapted from source ….)  

It is important in this context to discuss a famous tool for selecting among alternative theories called 

Ockham's razor.  Ockham's Razor is the principle proposed by William of Ockham in the fourteenth 

century: ``Pluralitas non est ponenda sine neccesitate'', which translates as "entities should not be 

multiplied unnecessarily''.  

In many cases this is interpreted as "keep it simple'', but in reality the Razor has a more subtle and 

interesting meaning. Suppose that you have two competing theories which describe the same system, 

if these theories have different predictions than it is a relatively simple matter to find which one is 

better: one does experiments with the required sensitivity and determines which one gives the most 

accurate predictions. For example, in Copernicus' theory of the solar system the planets move in 

circles around the sun, in Kepler's theory they move in ellipses. By measuring carefully the path of the 

planets it was determined that they move on ellipses, and Copernicus' theory was then replaced by 

Kepler's.  

But there are theories, which have the very same predictions and it is here that the Razor is useful. 

Consider for example the following two theories aimed at describing the motions of the planets 

around the sun  

 The planets move around the sun in ellipses because there is a force between any of them and 

the sun, which decreases as the square of the distance.  

 The planets move around the sun in ellipses because there is a force between any of them and 

the sun, which decreases as the square of the distance. This force is generated by the will of 

some powerful aliens.  

Since the force between the planets and the sun determines the motion of the former and both theories 

posit the same type of force, the predicted motion of the planets will be identical for both theories. 

The second theory, however, has additional baggage (the will of the aliens), which is unnecessary for 

the description of the system.  
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If one accepts the second theory solely on the basis that it predicts correctly the motion of the planets 

one has also accepted the existence of aliens whose will affect the behavior of things, despite the fact 

that the presence or absence of such beings is irrelevant to planetary motion (the only relevant item is 

the type of force). In this instance Ockham's Razor would unequivocally reject the second theory. By 

rejecting this type of additional irrelevant hypotheses guards against the use of solid scientific results 

(such as the prediction of planetary motion) to justify unrelated statements (such as the existence of 

the aliens), which may have dramatic consequences. In this case the consequence is that the way 

planets move, the reason we fall to the ground when we trip, etc. is due to some powerful alien 

intellect, that this intellect permeates our whole solar system, it is with us even now.., and from here 

an infinite number of paranoid derivations. For all we know the solar system is permeated by an alien 

intellect, but the motion of the planets, which can be explained by the simple idea that there is a force 

between them and the sun, provides no evidence of the aliens' presence nor proves their absence.  

A more straightforward application of the Razor is when we are faces with two theories, which have 

the same predictions, and the available data cannot distinguish between them. In this case the Razor 

directs us to study in depth the simplest of the theories. Although this sounds reasonable it is very 

important to realize that this does not guarantee that the simplest theory will be correct. Indeed, in 

biology a tendency of many modelers to adhere too much to the simplest explanation has created quite 

a tension between these theoreticians and field biologists and experimentalists. 

 

Models as tools for scientific advancement: 'minimal models' 

We now turn to a special class of models, which is specially designed to aid in the scientific approach 

to unravel how complex systems such as organisms, ecosystems and the climate work. These models 

often referred to as 'minimal models' or 'strategic models' typically focus on one specific mechanism. 

An important merit is that they can often show an explanation for a certain phenomenon that would 

not easily be obtained by using just common sense.  

Obviously, in view of the reflections on causality presented earlier, even if the model seems to work 

well, we should be careful not to assume immediately that the modeled mechanism is the cause of that 

phenomenon in any real world situation. In biology, failure to recognize this status of minimal models 

and their resulting possibilities and limitations for unraveling real world systems has contributed 

significantly to the antagonism between 'theoreticians'  (modelers) and 'naturalists'. Theoreticians, for 

instance, tend not to pay much attention to the fact that their natural objects of study usually 

corresponds to only one of many hypotheses for a phenomenon. They rather feel that their job is done 

when one of these hypotheses is satisfactory modeled. To naturalists this attitude tends to give the 

impression that the theoretician pretends to give the one and only explanation for the phenomenon in 

nature. Since it is always obvious that many important factors are left out of the model, this claim may 

seem so ridiculous that it is not even worth responding to. The situation is easily polarized if 

theoreticians exaggerate their love for Ockham's razor and consider their explanation for the 

phenomenon better for the mere reason that it is simpler, i.e. that it requires less biological detail. 

Probably this will exactly be the reason why many naturalists dislike it, since their ethic is rather one 

of perceptiveness of the richness of biological detail than of simplicity. 
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A characteristic critique to a scientific article based on a minimal model could be: "the model contains 

so few biology that it seems unlikely to learn us anything about real life". A comment remarkably 

similar to one on experiments saying that "this work on aquaria without sediment is irrelevant to 

natural systems since all lakes have sediment". The crucial misunderstanding illustrated by these 

(real) comments is that the experiments or models are intended to capture the whole system whereas 

they are obviously just focusing on specific mechanisms. 

 

Basically the same misunderstanding tends to hamper the communication between experts and a 

theoretician trying to cooperate in putting up a minimal model. The expert will typically want to 

incorporate every aspect that is known or likely to be of influence, whereas the theoretician tries to 

keep out as much as possible. It may seem unlikely that at the end of this process of seemingly 

arbitrary choices a model will come out that has exactly the components that it "needs". However, 

again there is a misinterpretation of the intentions in this. If the model would be intended to give a 

quantitatively good description of the systems behavior, every important aspect should indeed be 

included, but unlike in the case of predictive simulation models, with a minimal model we are in the 

comfortable situation that there is no need to be exhaustive. We still want to make clever choices, so 

as to address mechanisms that are likely to be important in nature. However, for the soundness of 

scientific argumentation it actually does not matter what we put in and what we leave out, as long as 

the results are interpreted in a proper way.  

 

Proper interpretation requires that we realize that a model does nothing else than showing the result of 

the incorporated processes and relationships. If we are lucky these results are at first sight counter-

intuitive. We then obtained a new explanatory mechanism on the checklist (Fig. 1) that we can use in 

the search for the real causes of a phenomenon in nature. A mechanism that because of its counter-

intuitiveness would probably never have occurred to us if we would only have used common sense 

but that is just as likely to occur in nature. A somewhat counter-intuitive explanation obtained from a 

model may feel less safe and convincing than a common sense biologist’s explanation, but the 

reliability of human feeling in these matters is at least questionable. After all, common sense is also 

the thing that tells us that the world is flat. 

 

In addition to suggesting alternative explanations for phenomena observed in nature, minimal models 

can effectively enhance our insight in mechanisms that are difficult to grasp intuitively. Playing 

around with such models gives a feeling for the effects of the intertwined feedback systems often 

encountered in natural systems. Obviously, the question whether the hypothesized mechanisms are 

actually responsible for the real world behavior can only be answered by studying the real system. 

However, the search images needed to detect intricate regulatory mechanisms can effectively be 

obtained by experimenting with models.  

 

Note that there is not really an essential difference between the small minimal models and the larger 

elaborate simulation models used for prediction. Both are usually sets of differential equations 

representing the dynamics of important components of the system. Indeed, experiments with large 
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simulation models can also generate valuable insights in how the real system may work. However, 

small models are simply more suitable for that purpose because they are easier to understand.  

 

 

Modeling in practice: formulation, analysis and interpretation 

Once you get the hang of it, modeling is great fun. There is some magic to the possibility to build a 

kind of toy-world, which starts a life on its own in your computer. As a result it is sometimes difficult 

to remember that modeling is a tool, not a goal. Any modeling exercise should obviously start with a 

question. What is it we want? Explanation for a certain puzzling phenomenon? Prediction of the 

impact of pollution? Subsequently, we should ask ourselves two questions: 

1) Is a model the best way to solve this question. And if so, 

2) Which type of model would be most appropriate. 

 

Formulation: making a model 

In case this leads to the conclusion that a mechanistic mathematical model would be of help, the 

process of identifying important mechanisms starts. In case of a minimal model the choice is 

somehow arbitrary as long as we are careful in our final conclusions. In case of a predictive model, it 

is very important to have good quantitative information about all the important processes. The next 

step is to represent the processes in a mathematical form. Usually, standard formulations that have 

been used before for certain processes are the best choice, but sometimes one can defend new 

mathematical ways of describing certain processes.  

 

Analysis: finding out how the model behaves 

Some properties of simple sets of equations (especially minimal models) can be analyzed analytically 

with pen and paper. However, mostly we will want to use the computer to help analyzing the 

'emergent properties' of the model. Many different techniques and software packages are available for 

this step. 

 

Interpretation: what we can learn from this about the real world 

The last step is to formulate what the results of the modeling exercise tell us about the initial real 

world problem. This is probably the most difficult step, and the step, which is often taken in a much 

too sloppy way in practice. It will be clear after reading this introduction, that it is equally important 

to stress what can be concluded from a model, as to stress what cannot. 

Assignments 

 The incidence of heart attacks and other cardio-vascular problems is correlated to the 

cholesterol content of the blood of people. This has led to a tendency to eat food, which 
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contains little cholesterol. Which causalities are implicitly assumed here, and how could we 

test these. 

 Analysis of ancient ice-layers and other paleaeo evidence has revealed that the CO2 content 

of the atmosphere was systematically low during ice ages and high during warm periods in 

between. Ice ages are invoked by reduced incoming solar energy due to variations in the orbit 

of the earth. What does this suggest about the causal relationship between CO2 content of the 

atmosphere and temperature? What would be the use of a regression model of the relationship 

between these parameters based on the reconstructed time series of ancient earth history? 

Draw a schedule of the relationships including human emissions. What kind of models could 

be of help to elucidate our role? Which processes should be included? 

 Mobile telephones emit radiation which some consider dangerous for the users. Which kind 

of model (or models) would you advice to explore whether there are reasons for such fear? 

 Give an example of a correct use and of an incorrect use of Ockham's razor. 
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Equilibrium and Bifurcations 

(based on Scheffer, 2009) 

 

Tipping points and resilience 

Suppose that you are in a canoe and gradually lean farther and farther over to one side to look at 

something interesting underwater. Leaning over too far may cause you to capsize and end up in an 

alternative stable state upside down. Although the details of the theory of alternative stable states may 

appear tricky, several key properties can be seen in this simple example. For instance, returning from 

the capsized state requires more than just leaning a bit less to the side. It is difficult to see the tipping 

point coming, as the position of the boat may change relatively little up until the critical point. Also, 

close to the tipping point, resilience of the upright position is small, and minor disturbances such as a 

small wave can tip the balance. 

Resilience, defined as the ability of a system to recover to the original state upon a disturbance, is a 

tricky issue. The famous seventeenth-century Swedish ship the Wasa is an example in case. Named 

for the royal house of Wasa, the ship was built as the most prestigious ship of the navy of Gustavus 

Adolphus to combat the Polish on the Baltic. Against the advice of his engineers, the king insisted on 

an extra layer making the ship higher. The result looked impressive. However, when the ship set sail 

on its maiden voyage, a sudden breeze of wind made it sink within minutes, not a mile from land. In a 

similar vein, we are reminded almost every year of the instability of ships by tragic accidents with 

ferries. Overloading is an especially treacherous aspect, as it can reduce resilience of the correct 

position in an unperceived way. A relatively small disturbance like wave action or too many people 

moving to one side might then tip the boat. 

In such everyday examples of systems with alternative stable states, the consequences are intuitively 

straightforward. Nevertheless, with respect to complex systems such as societies and ecosystems, the 

idea is perhaps somewhat counterintuitive. Could coral reefs, shallow lakes, nerve cells, the climate, 

or public attitude really tip over like a canoe? If so, can we manage or predict such shifts? In this 

chapter we will go through the basic theory and explain why some biological systems might have 

tipping points.
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Equilibrium in dynamical systems  

The theory of dynamical systems is a branch of mathematics used to describe the interaction between 

all kinds of state variables. That sounds fairly broad, and indeed it is. A cell, a fish, a population, or 

the Earth may be considered a dynamical system - that is, their state can be understood as the result of 

underlying governing processes. For instance, the temperature of the Earth is largely the result of heat 

gained from solar radiation and heat lost by radiation of heat back into the atmosphere. The result is a 

stable equilibrium. A state is called an equilibrium when it holds that if you start exactly in that 

particular state you stay there indefinitely. Each equilibrium can be (locally) stable or unstable and 

stability of an equilibrium means in the case of the temperature of the Earth that if the temperature 

were brought into a slightly different state, it would move back to the original equilibrium value. For 

instance, if the Earth were cooler than the equilibrium temperature, it would radiate less into the 

atmosphere. Since the incoming radiation remains the same, this means that the Earth would warm up, 

thus moving in the direction of the equilibrium temperature. On the other hand, if the Earth were 

warmer, it would radiate more, and thus lose heat and cool down to the equilibrium again.  

Another well-known example is that of a population that has reached the carrying capacity of the 

environment (Figure 2P.1). Such a population is at an equilibrium density resulting from a balance 

between birth and death rates. Again, it is a stable equilibrium. If a proportion of the population were 

wiped out by an adverse advent, there would be more resources for the survivors. This promotes birth 

rates and reduces death rates so that the population grows back to the equilibrium density. On the 

other hand, if densities exceed carrying capacity, reduced birth and increased mortality will push it 

back to the equilibrium. The overall rate of change in the population is the net result of gains and 

losses; in equilibrium, it is zero.  

 

 

 

 

Figure 2P.1. The concept of a stable 

dynamic equilibrium illustrated for the 

case of a hypothetical population that 

settles at a density that corresponds to 

the carrying capacity of the environment 

(top panel). The slope of the hills in the 

stability landscape (bottom panel) 

corresponds in a negative sense to the 

rate of change in the population density 

(middle panel), which is the net result of 

per capita birth and death rates (top 

panel). 

 

0 
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An attractive way to depict the stability of a system is by means of a stability landscape (Figure 2P.1, 

bottom panel). The slope at any point in such a landscape corresponds in a negative sense to the rate 

of change. Thus, at equilibrium, where the rate of change is zero, the slope is also zero. You can now 

imagine the system like a ball settling in the lowest point, representing the equilibrium. This “ball in a 

cup” analogue should not be taken too literally, for instance the ball usually will slide towards the 

equilibrium and not overshoot like a real ball would do. Nonetheless, it is a good intuitive aid for 

grasping the essence of the matter.  

For obvious reasons, a stable state as depicted in these graphs is also called an attractor. The idea of 

an equilibrium is an important concept, but it is of course so that many systems are in reality not in 

equilibrium. The temperature of the Earth or the densities of populations are never constant. 

Fluctuations in the environment and all kinds of smaller or larger perturbations prevent the systems 

from settling into an equilibrium. Obviously, the equilibrium state can change if conditions are 

altered. For instance, as fossil fuel combustion causes greenhouse gas levels to increase, the Earth will 

retain relatively more heat and become warmer. There can be also other kinds of attractors, such as 

cycles or strange attractors, that prevent systems from settling to a stable state, even if they were in a 

perfectly constant environment. Moreover, systems can have several alternative attractors, separated 

by repelling (=unstable) points, cycles, or other structures, and critical transitions happen if a system 

shifts from one attractor to another.  

 



15 

 

 

 

 

Figure 2P.2. The concept of alternative 

equilibria illustrated for the case of a 

hypothetical population that experiences an 

Allee effect, implying that at low densities, the 

net growth of the population is negative because 

of increased per capita mortality and reduced 

per capita birth rates. As a result, a situation in 

which the population density is zero represents 

a stable state. Only if the critical density that 

marks the border of the basin of attraction of 

the nil state (small open circle in upper panel 

and light-colored ball in lower panel) is 

exceeded the population grows and ends up in 

the alternative stable state at carrying capacity. 

 

Alternative equilibria  

As a simple example of a system with alternative attractors, imagine a population of animals that runs 

into trouble if its numbers get too low. This may happen, for instance, if finding a mate becomes too 

difficult at low densities. Also, this can occur in species that congregate to protect themselves against 

predators. In such cases, mortality may go up at low population densities, but birth rates may fall too. 

For example, animals such as flamingos and penguins do not breed unless they are surrounded by 

many other mating individuals of the same species. The first to suggest that population growth can 

become depressed at low densities was the American zoologist Warder Allee, and the phenomenon is 

now commonly referred to as the Allee effect. Clearly, this is a highly important mechanism when it 

comes to understanding the extinction of endangered species. If the Allee effect is strong enough, it 

implies that a population can go into free fall if its density goes below a certain critical level (Figure 

2P.2). In that case, the population has two alternative stable states: one at carrying capacity as in the 

case described earlier; the other at density zero. In the previous simple growth model (Figure 2P.1), a 

zero density is also an equilibrium state, as the absence of parents results simply in no offspring. In 

that case, however, a small addition of animals will be enough to kick off a population increase that 

stops only when the carrying capacity is reached, therefore it is an unstable equilibrium. In contrast, a 

population with a strong Allee effect is trapped into the zero-equilibrium state. A small initial 

population number is drawn back into the zero-state, as long as it is below the critical density (open 

dots in Figure 2P.2). As you will see later, plant populations can also have such a critical density. This 

happens especially under harsh conditions where a critical plant density is needed in order to 
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“engineer” the environment sufficiently to make it suitable for plant growth. A simple mathematical 

model of a population with an Allee effect can be found in Box 2P.1.  

 

In the following, we will look more closely at the general consequences for the dynamics of systems.  

 

Catastrophic shifts and hysteresis  

The existence of multiple stable states has profound implications for the way in which a system 

responds to changing conditions. Mostly, the equilibrium of a dynamical system changes smoothly in 

response to changes in the environment (Figure 2P.4a). Also, it is quite common that the system is 

rather insensitive over certain ranges of the external conditions, while responding relatively strongly 

around some threshold condition (Figure 2P.4b). For instance, mortality of a species usually increases 

sharply around some critical concentration of a toxicant. In such a situation, a strong response occurs 

BOX 2P.1: The Allee effect 

Some populations have a threshold density below which they go into free fall towards extinction. In 

the main text, different mechanisms that can cause this phenomenon are explained. One of the many 

possible equations that can describe such an Allee effect in a single population is: 

 

In which: N(t) is the population size at time t (g m–2), r is the relative growth rate (d–1), K is the 

carrying capacity (g m–2) and C a critical density (g m–2). The difference from the classic logistic 

growth equation is the multiplication by the last term , which implies that the population 

growth becomes zero not only at  extinction  and carrying capacity , but also at 

the Allee extinction threshold . Below this critical density , net growth is negative and 

the population goes extinct. Parameters can be chosen on the basis of data, but obviously the 

extinction threshold  should be larger than zero to obtain the typical Allee effect (and by 

definition C < K). 

 

 

Figure 2P.3.(a) The stability landscape. (b) The 

population growth of a logistically growing 

species with an Allee effect ( ,  and 

). It can easily be seen that this model 

has three equilibria, of which there are two 

stable and one unstable (Which and why?). 
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when a threshold is passed. Such thresholds are obviously important to understand. However, a very 

different, much more extreme kind of threshold than this occurs if the system has alternative stable 

states. In that case, the curve that describes the response of the equilibrium to environmental 

conditions is typically “folded” (Figure 2P.4c). Note that such a catastrophe fold implies that indeed 

for a certain range of environmental conditions, the system has two alternative stable states, separated 

by an unstable equilibrium (dashed line) that marks the border between the basins of attraction of 

the alternative stable states, just as in the example of the population with an Allee effect (Figure 2P.2).  

This situation lies at the root of true critical transitions: when the system is in a state on the upper 

branch of the folded curve, it cannot pass to the lower branch smoothly. Instead, when conditions 

change sufficiently to pass the threshold (F2, Figure 2P.4), a “catastrophic” transition to the lower 

branch occurs (Figure 2P.4c). Clearly, this is a very special point. In the exotic jargon of dynamical 

systems theory, it is called a bifurcation point. There exist several different kinds of bifurcation 

points that all mark thresholds at which the system’s qualitative behavior changes. For instance, the 

system may start oscillating, or a species may go extinct at a bifurcation point.  

The point (F2) shown in Figure 2P.4c and 2P.5 marks a so-called catastrophic bifurcation. Such 

bifurcations are characterized by the fact that an infinitesimally small change in a control parameter 

(reflecting, for instance, the temperature) can invoke a large change in the state of the system if it 

crosses the bifurcation. While all kinds of bifurcations correspond in a sense to critical transitions, 

catastrophic bifurcations are really the mathematical analogue of the dramatic transitions, e.g. from 

 

Figure 2P.4. Schematic representation of possible ways in which the equilibrium state of a 

system can vary with conditions such as nutrient loading, exploitation, or temperature rise. In 

panels (a) and (b), only one equilibrium exists for each condition. However, if the equilibrium 

curve is folded backward as in panel (c), three equilibria can exist for a given condition. The 

arrows in the graphs indicate the direction in which the system moves if it is not in equilibrium 

(that is, not on the curve). It can be seen from these arrows that all curves represent stable 

equilibria, except for the unstable equilibrium values on the dashed middle section in panel (c). 

If the system is pushed away a little bit from this part of the curve, it will move further away 

instead of returning. Hence, these unstable equilibria represent the border between the basins 

of attraction of the two alternative stable states on the upper and lower branches.  
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clear water to algal dominated water, that we are trying to understand. The bifurcation points in a 

catastrophe fold (F1 and F2) are known as fold bifurcations.  

The fact that a tiny change in conditions can cause a major shift is not the only aspect that sets 

systems with alternative attractors apart from the “normal” ones. Another important feature is the fact 

that in order to induce a switch back to the upper branch, it is not sufficient to restore the 

environmental conditions from before the collapse (F2). Instead, one needs to go back further, beyond 

the other switch point (F1), where the system recovers by shifting back to the upper branch. This 

pattern in which the forward and backward switches occur at different critical conditions (Figure 

2P.5) is known as hysteresis. From a practical point of view, hysteresis is important, as it implies that 

 

Figure 2P.5. If a system has alternative stable 

states, critical transitions and hysteresis may occur. 

If the system is on the upper branch, but close to 

the bifurcation point F2, a slight incremental 

change in conditions may bring it beyond the 

bifurcation point and induce a critical transition 

(or catastrophic shift) to the lower alternative 

stable state (forward shift). If one tries to restore 

the state on the upper branch by means of reversing 

the conditions, the system shows hysteresis. A 

backward shift occurs only if conditions are 

reversed far enough to reach the other bifurcation 

point F1. 

 

 

Figure 2P.6. External conditions affect the 

resilience of multiple stable systems to 

perturbation. The bottom plane shows the 

equilibrium curve as in Figure 2.5. The 

stability landscapes depict the equilibria and 

their basins of attraction at five different 

conditions. Stable equilibria correspond to 

valleys; the unstable middle section of the 

folded equilibrium curve corresponds to 

hilltops. If the size of the basin of attraction is 

small, resilience is small, and even a moderate 

perturbation may bring the system into the 

alternative basin of attraction. 
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this kind of catastrophic transition is not so easy to reverse.  

The idea of catastrophic transitions and hysteresis can be nicely illustrated by stability landscapes. To 

illustrate how stability is affected by changes in conditions, we create stability landscapes for different 

values of the conditioning factor (Figure 2P.6). For conditions at which there is only one stable state, 

the landscape has only one valley, just as in the case discussed at the beginning of this section (Figure 

2P.1). However, for the range of conditions where two alternative stable equilibrium states exist, the 

situation becomes more interesting. The stable equilibrium states occur as valleys, separated by a 

hilltop. This hilltop is also an equilibrium (the slope of the landscape is zero). However, this 

equilibrium is unstable. It is a repellor. Even the slightest change away from it will lead to a self-

propagating runaway process moving the system toward an attractor.  

To comprehend the catastrophic transitions and hysteresis, imagine what happens if you start in the 

situation of the landscape in front. The system is in the only existing equilibrium. There is no other 

attractor, and therefore this state is said to be globally stable. Now suppose that conditions change 

gradually, so that the stability landscape changes to the second or third one in the row. Now there is 

an alternative attractor, implying that the state in which the system was has become locally (rather 

than globally) stable. However, as long as no major perturbation occurs, the system will not move to 

this alternative attractor. In fact, nothing would reveal the fundamental changes in the stability 

landscape. If conditions change even more, the basin of attraction around the equilibrium in which the 

system rests becomes very small (fourth stability landscape) and eventually disappears (last 

landscape), implying an inevitable catastrophic transition to the alternative equilibrium state. Now, if 

conditions are restored to previous levels, the system will not automatically shift back. Instead, it 

shows hysteresis. If no large perturbations occur, it will remain in the new state until the conditions 

are reversed beyond those of the second landscape.  

 

Resilience as the width of a basin of attraction  

In reality, conditions are never constant. Accidental, or stochastic, events such as weather extremes, 

fires, or pest outbreaks can cause fluctuations in the conditioning factors but may also affect the state 

directly - for instance, by wiping out parts of populations. If there is only one basin of attraction, the 

system settles back to essentially the same state after such events. However, if there are alternative 

stable states, a sufficiently severe perturbation may bring the system into the basin of attraction of 

another equilibrium state. Obviously, the likelihood that this happens depends not only on the 

perturbation, but also on the size of the attraction basin. In terms of stability landscapes (Figure 2P.6, 

if the valley is small, a small perturbation may be enough to displace the ball far enough to push it 

over the hilltop, resulting in a shift to the alternative stable state. Following Holling (1973), we use 

the term resilience to refer to the size of the valley or basin of attraction around a state that 

corresponds to the maximum perturbation that can be taken without causing a shift to an alternative 

stable state.  

A crucially important phenomenon in systems with multiple stable states is that gradually changing 

conditions may have little effect on the state of the system, but nevertheless reduce the size of the 

attraction basin (Figure 2P.6). This loss of resilience makes the system more fragile in the sense that it 

can be easily tipped into a contrasting state by stochastic events (i.e. events that occur by chance such 
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as weather events; see also week 4). This is also one of the most counterintuitive aspects. Whenever a 

large transition occurs, the cause is usually sought in events that might have caused it: the collapse of 

some ancient cultures may have been caused by droughts. An intractable conflict may be due to the 

act of an evil leader. A lake may have been pushed to a turbid state by a hurricane, and a meteor is 

thought to have wiped out the dinosaurs, leading to the rise of mammals. The idea that systems can 

become fragile in an invisible way because of gradual trends in climate, pollution, land cover, 

poverty, or exploitation pressure may seem counterintuitive. However, intuition can be a bad guide, 

and this is precisely where good and transparent systems theory can become useful. Currently, such a 

resilience-based management style is starting to be used in some systems such as the management of 

coral reefs, but it requires a major paradigm shift in many other areas.  

 

Phase plane analysis 

Here we will introduce the analysis of more complex models. If you want to describe the interactions 

between for instance two competing species, you need to describe the change in each of the two 

species. Therefore it is needed to describe the change in two state variables: one describing the 

change in species A and one for species B. In the particular case of competition between two species, 

alternative stable states may also arise. The general rule here is that competition can lead to alternative 

stable states if it is better to have individuals of the same species around than individuals of the other 

species (i.e. intraspecific competition is less severe than interspecific competition.). This implies a 

positive feedback in developing towards a monoculture of each of both species (the two alternative 

attractors). In the following we will show how a phase plane analysis can help to analyze the classical 

two species Lotka-Volterra competition model.  

 

The idea of a phase plane analysis is to draw the line at which one species is in equilibrium (the zero-

growth isoclines or nullclines) as a function of the other species and vice versa (Figure 2P.7). Such 

nullclines can be produced, for instance, from the famous Lotka-Volterra competition model: 

 

Note that the first part of the growth equation of species A is simply the logistic equation (with growth 

rate rA and carrying capacity KA). However, in addition to the intraspecific competition, that was 

already included in the logistic equation, species A now suffers from competition by the other species 

. The equation for the growth of species B is analogous to that for species A. The 

nullclines plotted in Figure 2P.7 and Figure 2P.8 are solutions of the growth equations  and 

. It can be seen from the nullclines that the model assumes that the equilibrium density of 

each species declines linearly with increasing density of its competitor (Figure 2P.8). Note however 

that if species A is in equilibrium, species B might still change, therefore the total model has only an 

equilibrium if both nullclines intersect. 
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Figure 2P.7. Competition of two species can be seen as a process in which they affect the carrying 

capacity of each other. In the left panel (a) the nullcline of species A is drawn and on this line the 

abundance of species B is the only one that changes. Increasing abundance of species B reduces the 

carrying capacity of A, and hence the equilibrium density to which species A will settle. Moreover, in 

this plane the change in abundance of species B is not given explicitly. Similarly, in the right panel (b) 

the nullcline of species B is drawn and on this line the abundance of species A is the only one that 

changes: the equilibrium density to which species B will settle depends on the density of species A. In  

this plane the change in abundance of species A is not given explicitly (b). The arrows indicate the 

direction of change of only one species at a time (so both figures should be combined to see the real 

change in both species together. 

 

The steepness of the decline depends of course on the intensity of competition. If the competitor has a 

somewhat different niche, it may be that its suppressing effect is minor. To see the effect of the 

competition, one should plot the equilibrium lines of the two species  

 

 

Figure 2P.8. Equilibrium lines for competing species A and B combined reveal the equilibria 

resulting from the competition. Dots are stable equilibria, whereas open circles represent unstable 

equilibria. 

a b 
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together (Figure 2P.8). If one equilibrium line is entirely above the other, the species with the highest 

equilibrium wins. If the two lines intersect, this is a point at which both species are at equilibrium. 

There are two possibilities now, either the intersection point is stable and both species can coexists 

(Figure 2P.8c), or the intersection point is an unstable equilibrium and there are two alternative 

equilibrium states, either with species A or with species B. The unstable equilibrium is called a saddle 

point (Figure 2P.8d). Though a saddle point is unstable, it is also attracting from two directions. If 

you start in Figure 2P.8d with a combination of both species close to the dotted line (the separatrix), 

you first move in the direction of the saddle point before you bend to either dominance of species A or 

species B. It can be seen from Figure 2P.8c and d that stable coexistence requires that interspecific 

competition is relatively weak (i.e. the slope of the nullclines is such that the competitor has less 

effect on the equilibrium of either species - the slope of both is less steep compared to the line 

between KA and KB), whereas alternative equilibria arise if interspecific competition is stronger than 

intraspecific competition (implying that the decline in equilibrium density as a function of the density 

of the competitor is steep). This can also be seen from constructing the resulting arrows from the 

separate nullclines (Figure 2P.7). Note that above the nullcline of A the biomass of A decreases, below 

A increases, and right of the nullcline of B its population decreases and left of the B nullcline, B 

increases. 

To see the difference in response to environmental conditions, imagine what happens if the 

environment changes in a way that is good for species A but has no direct effect on species B. This 

implies that the equilibrium line for species A in the diagram moves up (as KA increases), whereas the 

line for B remains unaltered. If we start in a situation in which species B would win (panel b), this will 

eventually turn the system into a situation in which A will win (panel a). However, the transition 

depends on whether coexistence is stable or unstable (Figure 2P.9). In the case of stable coexistence 

(Figure 2P.8c; Figure 2P.9a), as soon as the lines cross, the resulting stable point at which both 

species are in equilibrium will move gradually to the upper left, implying that species B becomes 

gradually less abundant in the coexistence equilibrium. When the intersection point eventually reaches 

the vertical axis, species B goes extinct, and a monoculture of A remains. This is a so-called 

transcritical bifurcation. It is not a catastrophic bifurcation, as the change for species B from rare to 

extinct is only a small (albeit important) one.  

Now consider what happens if the same environmental change occurs in a system with alternative 

equilibria (Figure 2P.8d; Figure 2P.9b). Suppose that the system is in the equilibrium dominated by 

species B (at KB) while species A is trying to invade from elsewhere. If the lines cross, a further 

increase in KA will cause the unstable intersection point to slide to the lower right. However, the B 

monoculture equilibrium (KB) remains stable as long as the unstable intersection point does not hit it. 

Nonetheless, it can be seen that the resilience of this monoculture decreases and species B becomes 

vulnerable to invasions of species A. As the saddle moves toward the B monoculture point, the 

attraction basin of this equilibrium thus shrinks. This implies that moderate invasions of species A 

may be enough to trigger a shift to the A monoculture state. Eventually, if the equilibrium line of A 

moves enough to let the saddle point collide with the B monoculture equilibrium (KB), this 

monoculture becomes unstable. Even the slightest invasion by A will now cause a runaway shift to a 

monoculture of A at KA. Note that as long as A remains absent, the shift away from the B monoculture 

will not occur. Such an unstable point in which one variable is zero is sometimes called a trivial 
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equilibrium. This is probably a common situation in nature, as illustrated by the fact that biological 

invasions are frequently successful. Many species are not absent because they cannot coexist with the 

rest of the community, but rather because they never arrived.  

 

 

Figure 2P.9. In competition, environmental change that favors species A but has no direct effect on 

species B can lead to a gradual (a) or catastrophic (b) transition, depending on the relative strength 

of interspecific versus intraspecific competition (see text for explanation). 
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Aspects of equilibria in 1 dimensional systems 

 

Equilibria in systems and models have many interesting characteristics, as described in the 

lecture Equilibrium and Bifurcations. In the following examples we will explain some of 

these characteristics in more detail, such as stability and bifurcation using a number of 

different models as example.  

 

Stability analysis in exponential growth and decay    The exponential growth or decay model 

is one of  the most simple models to describe for instance bacterial growth ( ), or the 

decay of a substance ( ): . The equation states that the rate of change of 

the state ( ) is linearly related to the amount of  present. We can obtain the 

analytical solution by separation of variables. The solution we obtain with the initial value 

 is  

 

The dimensions in the text and figures for x is mass per unit area, e.g. with units g m
–2

, and 

time, T, e.g. with the unit of day.  

Since an equilibrium is the situation where the system is not changing anymore, the only 

possibility for this system to be in an equilibrium is if ; so no bacteria present or 

no substance left anymore.  

We can graphically determine whether this equilibrium is stable by plotting the derivative of 

 ( ) or, for brevity, ( ) as a function of . 

For exponential growth ( ) this is depicted in Figure 2T.3.  
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Figure 2T.3-a. Rate of change  

plotted against state .  

Figure 2T.3-b. State  plotted against time. 
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The left panel shows that the only value for which  equals zero is . If the state  is 

positive then  and thus  is increasing, and will go to the right. If  is negative then 

 and thus  is decreasing and going to the left. As the arrows point away from the 

equilibrium,  is an unstable equilibrium. Note that in reality  cannot be negative. 

However, for the mathematical analysis this is no problem. The right panel shows the time 

evolution of  for the case of a positive initial value of  and a positive . As can be seen  

increases for ever.  

For exponential decay ( ) the graphical analysis is depicted in Figure 2T.4.  
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Figure 2T.4-a. Rate of change  

plotted against state . 

Figure 2T.4-b. State  plotted against time. 

 

Also here the left panel shows that the only value for which  equals zero is . If the 

state  is positive then  and thus  is decreasing, and will go to the left. If  is negative 

then  and thus  is increasing and will go to the right. Therefore, as the arrows point 

towards the equilibrium,  is a stable equilibrium. Again  cannot be negative in reality, 

but for the mathematical analysis this is no problem. The right panel shows the time evolution 

of  for the case of a positive initial value of  and a negative . As you can see,  goes to 

zero.  

This exponential model is very simple and especially for growth ( ) not very realistic. 

Only for a limited time period it may describe growth in natural populations. For longer 

periods, however, the growth will soon become limited, for example with respect to the food 

needed for growth or the amount of space available for a population of animals. Generally, 

this is called the carrying capacity of the system. In the classical logistic growth model such 

limitations are introduced by the term  that is added to the exponential growth 

equation to give  

  (2T.3) 
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where  is the carrying capacity. The equilibrium in the logistic equation will be reached if 

the rate of change of the state is zero, so either at  or .  

Again we can graphically determine the stability of this equilibrium by plotting the derivative 

of  ( ) as a function of , Figure 2T.5. Note that the graph is a parabola.  

Growth dx/dt

0 2 4 6 8 10
-2

-1

0

1

2

3

x

x
'

x=0, unstable x=K, stable

Growth dx/dt

0 2 4 6 8 10
-2

-1

0

1

2

3

x

x
'

x=0, unstable x=K, stable

0 2 4 6 8 10
-2

-1

0

1

2

3

x

x
'

x=0, unstable x=K, stable

 
0 20 40 60 80

0

2

4

6

8

10

Time (t)

X

 

Figure 2T.5-a. Rate of change  plotted 

against state . 

Figure 2T.5-b. State  plotted against 

time, using initial condition 

. 

 

The graph in Figure 2T.5 is plotted for  and . There indeed appear to be two 

values for which  equals zero:  or . If the population size  is negative then 

 and thus  is decreasing. If  is between 0 and  then  and thus  is increasing. 

If  is larger than , then  and thus  is decreasing to carrying capacity . Thus, 

 is an unstable equilibrium and  is a stable equilibrium. This is illustrated with 

the arrows.  

 

The carrying capacity can be interpreted as intraspecific competition of a plant species for 

resources, for example, nutrients or space. In the next example we introduce a grazer that 

feeds on these plants. The net rate of change of the plant population can be described by  
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We introduce a new parameter, the grazing intensity, , which can be interpreted as the 

product of the number of grazers per unit area times the maximum amount of grass they each 

can graze per unit of time . The actual grazing will also be dependent on the amount 

of grass. Only when the amount of grass per area is high the grazing rate will be limited by 

the herbivores, because it is reasonable to assume that they cannot eat more than needed: they 

are then saturated (this is called a Holling type 2 functional response). These assumptions can 

be represented very well by a rectangular hyperbola (or Michaelis Menten or Monod) 

equation. The combination of the logistic growth equation with the grazing term then yields 

differential Equation 2R.4 

  (2T.4) 

where  is the amount of grass per unit area where the grazing rate is half as large as its 

maximum (half-saturation coefficient). Note that we assume that the number of grazers is not 

dynamical, i.e. their population is fixed and not dependent on the availability of food. The 

equilibria, where the net rate , can be found by plotting the growth term (logistic 

growth rate) and the loss term (the grazing term) in one figure with the amount of grass per 

unit area on the x-axis, Figure 2T.6.  
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Figure 2T.6. The growth term (logistic growth rate), , and the loss term (hyperbolic 

consumption rate), , plotted against state . Their intersections are the equilibria. 

 

The equilibrium points in this figure are the points where losses due to grazing exactly equal 

the growth of the plant population. Between the two rightmost equilibrium points, the gross 

plant population growth rate is higher than the grazing rate (parabola higher than Monod 

equation), which means that in this range the net growth of the plant population is positive. 

Before and after these equilibrium points, the consumption rate of the grass is higher than its 

growth rate, resulting in a negative net growth rate of the plant population (see arrows). The 

model of Equation 2T.4 is known as the Noy-Meir model, after the authors who introduced it 

in 1975 as a special case for predator (here a herbivore, for instance elephants) – prey (here 

grass) systems. Some other assumptions of the model are: 
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(i) the consumption rate of the herbivore population is the effective rate, because no 

distinction is made between, for example, juvenile and adult animals;  

(ii) the growth rate of the vegetation (primary productivity) at any moment only depends on 

the quantity of vegetation present at that time; all other factors affecting growth are 

considered constant in time;  

(iii) the increase in the low-biomass range in the logistic growth equation expresses the 

increase in photosynthetic capacity with increasing leaf area, and the levelling off to a 

plateau expresses self-interference effects such as shading and competition;  

(iv) the half-saturation coefficient in the rectangular hyperbola determines the slope of the 

curve and can be interpreted as a grazing or searching efficiency of the herbivore, i.e. the 

extent to which it can find food to meet its requirements.  

Analogous to the previous graphical analyses we can derive that the equilibrium point in 

the middle of Figure 2T.6 is unstable, whereas the other two equilibrium points are stable, as 

indicated by the arrows. The lower equilibrium is called the overgrazed state and the higher 

equilibrium the undergrazed state. 

The fact that the grass population goes extinct below the unstable equilibrium point is 

comparable with the Allee effect described in Chapter 2P: however, the Allee effect applies to 

a single species that can go extinct below a so-called Allee extinction threshold, which holds 

for example for flamingos and penguins that do not mate below a certain animal density. In 

the grass population example there is a similar threshold, but now it is caused by the grazing 

function of another species. 

 

An interesting question that can be asked about the Noy-Meir model is: what happens if 

grazing gradually increases? This implies that  in Equation 2T.4 becomes larger and larger 

due to more herbivores in the same area. Figure 2T.7-a shows a number of levels of grazing 

rates.  
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Figure 2T.7-a. The logistic rate of change (dotted 

line), and a number of different consumption 

or grazing levels c, plotted against state .  

Figure 2T.7-b. The trajectory of the subsequent 

equilibria of biomass if grazing intensity is 

increased, a so-called null-cline.  

 

In Figure 2T.7-a the four lower hyperbolas ( ) show levels of grazing with 

two intersection points for which the net rate of change in Equation 2T.4 equals zero, namely 

 and . The equilibrium at  is unstable, and the other one is stable. For 

the fifth grazing hyperbola ( ) there are three equilibrium values with the middle one 

unstable and the others stable, as before in Figure 2T.6. If grazing is increased further the two 

upper equilibrium values come closer to each other and eventually vanish ( ). We see 

that a gradual increase of the grazing rate, first shifts the amount of grass in the stable 

undergrazed equilibrium gradually to lower values, and if the hyperbola just surpasses the 

curve of the growth rate of the grass, implying overgrazing of the area, the grass goes extinct. 

So, if we plot the biomass in the vegetation at each of these stable equilibria against 

increasing grazing rate (Figure 2T.7-b), suddenly it will jump to zero. The point where this 

occurs is a bifurcation point, at , as at this parameter value the model behaviour 

changes significantly. Beyond this point there is only one stable equilibrium left. The 

interesting thing is that if the grazing pressure is diminished again, the grass population shifts 

back at a different level of grazing pressure ( ). The population only returns to its old level if 

the grazing pressure is brought back to a much lower value, namely to the left bifurcation 

point at . More practically, it is better to abandon the grazing area to let the grass 

recover to a new critical mass before reintroducing herbivores, but in natural systems this is 

usually not possible. The jump at the right bifurcation point of the model, at , is really 

going to zero, which means that even if we lower the grazing pressure to very low values, the 

model grass can never recover in this deterministic model. In reality, however, there is always 

some grass left which cannot be grazed by the animals and the grazers will usually stop 

grazing if the biomass is below such a level. The model is thus too simple, but strongly helps 

to understand the dynamics of the system, in combination with some extra information about 

reality.  

Figure 2T.7-b is called a bifurcation plot. It gives an overview of the effect of one parameter 

on the equilibria of the model. The parameter values where the equilibria change qualitatively 

(here one or two equilibria appear or vanish) are called bifurcation points.  
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Definitions used throughout the course 
 

Allee effect: The fact that at low population densities the relative growth rate of a population 

is lower than at high population densities. This can for instance be due to a lack of 

opportunities for the individuals to find and mate with each other. 

Alternative stable states: (see also: multiple stable states). Contrasting states to which a 

system may converge under the same external conditions. Which state is reached depends 

on the initial conditions of the state variables.  

Attractor: A state or dynamic regime to which a system converges given sufficient simulation 

time. point or set of points in state space to which other points in this space contract if they 

are iterated through time. 

Basin of attraction: The set of initial conditions from which you eventually reach  the 

attractor.  

Bifurcation point: Threshold in parameters (or conditions) that lead to a different quantitative 

bahavior of  the model.  

Carrying capacity: The value to which a population biomass or density grows in a certain 

environment. (i.e. the birth rates balance the death rates) 

Catastrophic bifurcation: A bifurcation where an attractor disappears and the system is 

forced to move to another attractor. Such bifurcations are characterized by the fact that an 

infinitesimally small change in a control parameter can invoke a large change in the state 

of the system if it crosses the bifurcation. An example is the fold bifurcation.   

Catastrophic transition: see critical transition.  

Continuous time: Time in a model is not sampled or measured in steps, but essentially at 

every possible time the value of a state variable is known. 

Critical transition: this kind of transition happens if a system shifts quite suddenly from one 

attractor to another 

Determinism, deterministic: a world view in which everything is considered to be predictable 

as long as initial conditions and governing mechanisms are perfectly known. 

Discrete time: Time in a model is sampled or measured in steps, for instance yearly or 

monthly steps. 

Dynamical system: A description of the time evolution of a particular variable which is called 

a state variable 

Equilibrium: A state is called an equilibrium when it holds that if you start exactly in that 

particular state you stay there indefinitely. 

Extrinsic randomness: If a source of randomness is extrinsic, it lies outside of the system we 

are studying. 

Fold bifurcation: A critical threshold in parameters where a catastrophic transition occurs. 

This bifurcation is part of a catastrophe fold.  

Hysteresis: The tendency of a system to state in the same state if the conditions change. In the 

context of alternative stable states, the term refers to the fact that with increasing control 

parameters, the critical transition may occur at a different value than with a decreasing 

control parameter 

Interspecific competition: Competition between individuals of different species. 

Intraspecific competition: Competition between individuals of the same species. 

Logistic growth: A simple model describing the growth of a population towards the carrying 

capacity. 

Multiple stable states: see alternative stable states. 

Non-linear dynamical system: a system of difference or differential equations that is not 
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linear, i.e. it includes non-linear interaction terms 

Nullclines: or zero-growth isoclines: line where growth of a species is zero, so where equil. 

exists. 

Parameter: A constant value that is used in a model. It usually doesn't change during a model 

run. 

Perturbation: A sudden disturbance in the conditions of a system. 

Phase plane analysis: The graphical analysis of nullclines in the plane of two state variables. 

Repellor: An equilibrium point that is unstable, thus the opposite of an attractor. 

Resilience: (Holling, 1973) The ability of a system to recover to the original state upon a 

disturbance, i.e. to the maximum perturbation it can take without causing a shift to an 

alternative stable state. 

Saddle-node bifurcation: see fold bifurcation 

Saddle point: A point in state space that is attracting in some directions and repelling in 

others. 

Separatrix: The border between two basins of attraction. 

Stable: Each equilibrium can be (locally) stable or unstable. An equilibrium is locally stable 

if when a system is originally in the equilibrium state and it is changed to a slightly 

different state, it would move back to the original equilibrium value. 

Stability landscape: A representation of the stability of a model as a landscape of hills and 

valleys depending on parameter values. 

State space: each point in this space completely specifies the state of the system 

State variable: one of the variables that is considered to vary in time in a dynamical system, 

e.g. the number of rabbits per m
2
 through time. 

Trivial equilibrium: the real trivial equilibrium is where everything is zero. In some systems 

the trivial equilibrium is an equilibrium with one of the states equal to zero. 

Transcitical bifurcation: A transcritical bifurcation is a parameter value where two equilibria 

cross. In biological systems it is often the point where one species goes extinct.  

Transient dynamics: the trajectory of a system before it settles down on an attractor 

Unstable: see stable (if it is not stable then it is unstable)  

Zero-growth isoclines: see nullclines. 
 

 

 


