

Universidade Federal do Rio Grande do Norte

Instituto de Química

Programa de Pós-Graduação em Química

Concurso para Entrada nos Cursos de Mestrado e Doutorado do PPGQ-UFRN 2018.1

Instruções

- 1. Não identifique sua prova. Coloque seu nome apenas na folha de rosto;
- Assinale as alternativas corretas APENAS na folha do gabarito (questões 1 a 8) e entregue-a ao final da prova, junto com as duas últimas folhas de respostas dedicadas às questões discursivas;
- 3. Utilize caneta azul ou preta para fazer a prova. Responda utilizando apenas o espaço indicado. Rasura no gabarito (questões de 1 a 8) invalidará a respectiva questão;
- 4. Escreva de modo legível. Dúvida gerada por grafia ou sinal poderá implicar em redução de pontos;
- 5. A prova terá duração de 4 (quatro) horas;
- 6. Não será permitido o uso de celulares, calculadoras programáveis e agendas eletrônicas.

1 1A								NIC													18
1 H	2 2A				E	z				tômic tômica						13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4
3 .i ,9	4 Be 9															5 B 10,8	6 C 12	7 N 14	8 0 16	9 F 19	10 Ne 20,2
11 Na 23	12 Mg 24,3		8	4 4B	5 5B		8	7 7B	8		B —	10	11 1B	12 28		13 Al 27	14 Si 28,1	15 P 31	16 S 32,1	17 Cl 35,5	18 Ar 39,9
9 K 9,1	20 Ca 40,1	2 S 4	c	22 Ti 47,9	23 V 50,	2 C 5	r	25 Mn 54,9	26 Fe 55	. 0	0 1	28 Nii 58,7	29 Cu 63,5	30 Zi 65	n.	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79	35 Br 79,9	36 Kr 83,8
17 8b 5,5	38 Sr 87,6		39 Y 3,9	40 Zr 91,2	41 Nb 92,9	N	2 fo 5,9	43 Tc 97	44 Ru 101	F	th I	46 Pd 06,4	47 Ag 107,9	41 C 11		49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,3
5 s 32,9	56 Ba 137,3		7 .a 8,9	72 Hf 178,5	73 Ta 180	7 V 9 18		75 Re 186,2	76 O: 190	s I	r	78 Pt 95,1	79 Au 197	80 Hg 200	g	81 TI 204,4	82 Pb 207,2	83 Bi 209	84 Po 209	85 At 210	86 Rn 222
87 Fr 123	88 Ra 226		9 lc 27																		
5 C 14	e P	9 r 0,9	60 No 144	l Pi	n	62 Sm 150,4	63 Eu 15	1 0	4 9d	65 Tb 158,9	66 Dy 162,5	67 Ho) E	68 Er 67,3	69 Tri 168	n Y	b L	u			
90 TI 23) g	n n na na na	92 U 23	9: N	3	94 Pu 242	95 Ar 24	n Ci	B m	97 Bk 247	98 Cf 251	99 Es 25:	9 11 8 Fr	00	10 M 25	1 10 d No	2 10 0 Li	13			

Nome do(a) candidato(a):	
--------------------------	--

QUÍMICA DO ENXOFRE

O enxofre é utilizado em diversos processos industriais, dentre os quais destacam-se a produção de ácido sulfúrico e a vulcanização da borracha. Concernente ao seu papel biológico, enxofre está presente nos aminoácidos cisteína, metionina e taurina, nos quais forma pontes de dissulfeto importantes para as estruturas espaciais das proteínas. Abaixo encontram-se questões sobre este importante elemento e seus derivados.

Questão 1) O oxidação eletroquímica de SO_2 é de extrema relevância na dessulfurização de gases emitidos por usinas energéticas que queimam combustíveis fósseis. Dentre as equações do mecanismo de reação, que é bastante complexo, a que apresenta maior potencial de redução é a $SO_2(aq) + 2H_2O(l)$ $SO_4^{2-} + 4H^+ + 2e^-$. Considerando-se 1,00 L de solução inicialmente neutra, qual o pH resultante após eletrólise de 1,00 L daquela solução por 30,0 min a uma corrente de 0,550 A? Desconsidere quaisquer equilíbrios que contribuam para formação ou consumo de íons hidrogênio. Dados: constante de Faraday = 96.485,33 C/mol; amper = C/s.

- (a) 1,69
- (b) 1,39
- (c) 1,99
- (d) 3,46

Questão 2) A combustão de 1 mol de enxofre atômico para gerar SO₂ libera 1.300 calorias. Quando 1 mol de enxofre atômico é convertido a SO₃ via combustão, 3.600 calorias são liberadas. Qual o a variação de entalpia quando 1 mol de SO₂ é queimado para gerar SO₃?

- (a) -4.600 cal
- (b) -1.500 cal
- (c) -2.300 cal
- (d) +8.000 cal

Questão 3) Um estudo de velocidade de reação para $SO_2 + O_3$ $SO_3 + O_2$ resultou nos dados da tabela abaixo:

[SO ₂], mol/L	[O ₃], mol/L	Velocidade inicial, mol/L . s
0,25	0,40	0,118
0,25	0,20	0,118
0,75	0,20	1,062

As ordens com relação ao SO₂ e O₃ são, respectivamente

- (a) 1 e 3
- (b) 0 e 1
- (c) 2 e 0
- (d) 1 e 1

._____

Questão 4)

Complexos octaédricos de monotiocarbamato de Fe(III) foram preparados. Para os complexos de metil e etil, o momento magnético de spin, μ_s , é 5,7 e 5,8 μ_B a 300 K. Ele muda para 4,7 e 5,0 μ_B a 150 K, e cai ainda mais para 3,6 e 4,0 μ_B a 78 K. A cor muda de vermelho para laranja, conforme a temperatura é reduzida. Para os compostos de coordenação da primeira série de transição, $\mu_s = (n \ (n+2))^{1/2} \ \mu_B$, em que n é o número de elétrons desemparelhados e μ_B é uma constante chamada magneton de Bohr.

De acordo com o enunciado é mais adequado a seguinte afirmação:

- (a) A 300 K ambos os complexos são de spin alto e conforme a temperatura é reduzida os valores de μ_s indicam uma mistura de spin alto e baixo.
- (b) A 78 K ambos os complexos de Fe(III) são de spin alto.
- (c) Conforme a temperatura é reduzida ambos os complexos mudam de spin baixo para spin alto
- (d) A 150 K o momento magnético de spin, μ_s , indica 2 elétrons desemparelhados para os dois complexos.

Questão 5)

O sulfato de bário, BaSO₄, e o sulfeto de cobre (I), Cu₂S, são exemplos de sais pouco solúveis em água. Sabendo que a 25°C as constantes do produto de solubilidade do BaSO₄ e do Cu₂S valem, respectivamente, 1,1 x 10⁻¹⁰ e 2,0 x 10⁻⁴⁷, os valores de solubilidade molar para cada um dos sais são:

- (a) $1.7 \times 10^{-16} \text{ mol/L para BaSO}_4 \text{ e } 2.0 \times 10^{-5} \text{ mol/L para Cu}_2\text{S}$.
- (b) $1.0 \times 10^{-5} \text{ mol/L para BaSO}_4 \text{ e } 1.7 \times 10^{-16} \text{ mol/L para Cu}_2\text{S}.$
- (c) $3.0 \times 10^{-4} \text{ mol/L para BaSO}_4 \text{ e } 3.2 \times 10^{-24} \text{ mol/L para Cu}_2\text{S}.$
- (d) $1.0 \times 10^{-5} \text{ mol/L para BaSO}_4 \text{ e } 3.2 \times 10^{-24} \text{ mol/L para Cu}_2\text{S}.$

Questão 6)

O raio iônico, uma importante propriedade periódica, segue um padrão geral em relação aos ânions: *todos os ânions são maiores que os átomos que lhes deram origem*. Tal fato fica evidenciado quando se analisa os raios calculados para o átomo de enxofre e para o ânion sulfeto (S²-) que valem, respectivamente, 104 e 184 picômetros. Dois fatores em especial podem ser atribuídos para justificar a tendência periódica do raio iônico dos ânions, sendo eles:

- (a) Alta eletronegatividade e alta energia de ionização.
- (b) Baixa eletronegatividade e alta afinidade eletrônica.
- (c) Maior repulsão eletrônica e maior carga nuclear efetiva
- (d) Maior repulsão eletrônica e menor carga nuclear efetiva.

Questão 7)

O ácido sulfúrico é um dos mais importantes produtos químicos fabricados em escala industrial. Estima-se que mais 80% do H₂SO₄ produzido sejam utilizados na fabricação de fertilizantes. Nas equações abaixo, não balanceadas, são mostrados uma das formas, usada pela indústria, de se obter o H₂SO₄.

(i)
$$FeS(s) + O_2(g)$$
 $Fe_2O_3(s) + SO_2(g)$.

(ii)
$$SO_2(g) + O_2(g) = SO_3(g)$$

(iii)
$$SO_3(g) + H_2O(1)$$
 $H_2SO_4(1)$

Considerando que o grau de pureza de obtenção do H_2SO_4 concentrado é 98% em massa, a quantidade em litros de H_2SO_4 (densidade = 1,8356 g/mL) obtida a partir de 1,0 tonelada (10^3 kg) de FeS(s) será aproximadamente:

- (a) 1000 L
- (b) 595 L
- (c) 607 L
- (d) 830 L

Questão 8)

Marque a alternativa correta que identifica a hibridização usada do átomo central (sublinhado) das seguintes moléculas: \underline{SO}_2 , \underline{SO}_2F , \underline{SF}_4 e \underline{SF}_3^+ .

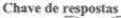
- (a) sp^2 , sp^3d , $sp^3d^2 e sp^3$.
- (b) sp^3 , sp^3 , $sp^3d^2 e sp^3d$.
- (c) sp^3 , sp^3 , sp^3 d e sp^3 d.
- (d) sp^2 , sp^3 , sp^3 d e sp^3 .

Questões discursivas

Questão 9)

A cisteína é um aminoácido sulfurado que desempenha importantes funções em nosso organismo, incluindo sua conversão em outros aminoácidos, tais como cistina e metionina, além de atuar na formação de peptídeos. Em laboratório, este último processo pode ser mimetizado através de uma reação em equilíbrio entre um ácido carboxílico e uma amina, sob altas temperaturas, formando uma amida.

Faça o que se pede nos itens abaixo.


i) Na reação abaixo, de conversão de cisteína em cistina, indique se o aminoácido de partida foi reduzido ou oxidado.

ii) Dê o produto do peptídeo formado a partir da reação entre metionina (eletrófilo) e alanina (nucleófilo), e sugira um mecanismo para este processo, na ausência de qualquer outro reagente ou catalisador. Desconsidere qualquer outra reação química.

Questão 10)

O dióxido de enxofre (SO_2) pode formar complexos fracos com bases de *Lewis* simples do bloco p. Por exemplo, F, (CH_3)₃N e OH formam complexos estáveis com SO_2 . Esboce as estruturas de *Lewis*, calcule a carga formal e preveja as geometrias prováveis (considerando S o átomo central) de SO_2 e SO_2F .

Questão (1)

$$n_{H^+} = (0.55 \text{ C/s}) \times (1800 \text{ s}) \times \left(\frac{1 \text{ mol de elètrons}}{96.485,33 \text{ C}}\right) \times \left(\frac{4 \text{ mols de H}^+}{2 \text{ mols de elètrons}}\right) = 0.0205 \text{ mol de H}^+$$

$$pH = -log[0,0205] = 1,69$$

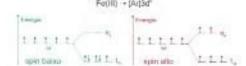
Questão (2)

$$S + O_2 \rightarrow SO_2$$
 $\Delta H = -1.300 \text{ cal}$

$$S \pm 3/2 O_2 \rightarrow SO_3$$
 $\Delta H = -3.600 cal$

A reação de interesse é SO₂ + 1/2O₂ → SO₃

Que é obtida invertendo-se a primeira e somando-se à segunda. O AH resultante é


Questão (3) Com relação ao SO2

$$\frac{1,062}{0,118} = \frac{k}{k} \left(\frac{0,75}{0,25} \right)^m \left(\frac{0,20}{0,20} \right)^n 9 = 3^m \Leftrightarrow m = 2$$

com relação ao O3

$$\frac{0,118}{0,118} = \frac{k}{k} \left(\frac{0,25}{0,25} \right)^m \left(\frac{0,40}{0,20} \right)^n 1 = 2^n \Leftrightarrow n = 0$$

Questão (4)

 $μ_s = (n (n + 2))^{1/2} μ_B$, então para spin baixo $(n - 1) μ_c = 1,73 μ_B$ e para spin alto $(n = 5) μ_B = 5,90 μ_B$. Para $n = 2 \rightarrow μ_s = 2,83 μ_B$. Para $n = 3 \rightarrow μ_a = 3,87 μ_B$. Para $n = 4 \rightarrow μ_c = 4,90 μ_B$. Uma comparação entre os resultados calculados de $μ_c$ com os dados experimentais indica que a 300 K ambos os complexos são de spin alto e conforme a temperatura é reduzida os valores de $μ_c$ indicam uma mistura de spin alto e baixo.

Questão (5)

Para o BaSO₄ (
$$K_{ps} = 1.1 \times 10^{-10}$$
) Para o Cu₂S ($K_{ps} = 2.0 \times 10^{-17}$)

Considerando s a solubilidade: Considerando s a solubilidade:

$$s = \sqrt[3]{\frac{4}{2,0 \times 10^{-47}}}$$

 $s = 1.71 \times 10^{-16} M$

Questão (6)

Maior repulsão eletrônica e menor carga nuclear efetiva.

Questão (7)

Equação balanceada

$$4 \text{ FeS}(s) + 9 \text{ O}_2(g) + 4 \text{ H}_2O(l) \rightarrow 2 \text{ Fe}_2O_3(s) + 4 \text{ H}_2SO_4(l)$$

$$V = (10^6 \text{ g}) \times \left(\frac{1 \text{ mol}}{87.9 \text{ g}}\right) \times \left(\frac{4 \text{ mol \'ac sulf\'urico}}{4 \text{ sulf.deferro}}\right) \times \left(\frac{98.1 \text{ g}}{1 \text{ mol}}\right) \times 0.98 \times \frac{1 \text{ mL}}{1,8356 \text{ g}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{595 \text{ L}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} \times \frac{1 \text{ M}}{1000 \text{ mL}} = \frac{1 \text{ M}}{1000 \text{ mL}} =$$

Questão (8)

Resposta: sp2, sp3, sp3d e sp3

Questão (9)

- i) a cisteína, aminoácido de partida, é oxidada. (0,20 ponto)
- ii) estrutura correta do peptideo: (0,30 ponto)
 mecanismo correto para formação do peptideo (0,50 ponto)

Questão (10)

Estrutura de Lewis: 0,40 ponto

Carga Formal: 0,30 ponto

Geometria: 0,30 ponto