

Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra PROGRAMA de Pós-Graduação em Ciência e Engenharia de Petróleo (PPGCEP)

Linha de Pesquisa: Meio Ambiente na Indústria de Petróleo e Gás Natural (MAP)

Concurso para Entrada no Curso de Mestrado do PPGCEP-UFRN 2017.2

Instruções

- 1. Não identifique sua prova. Coloque seu nome apenas na folha de rosto, no local indicado.
- 2. Utilize caneta azul ou preta de material transparente para fazer a prova.
- 3. Escreva de modo legível. Dúvida gerada por grafia ou sinal poderá implicar em redução de pontos.
- 4. A prova terá duração de 4 (quatro) horas.
- 5. Não será permitido o uso de celulares e agendas eletrônicas. Só será permitido o uso de calculadora científica não programável.
- 6. Não serão dadas informações adicionais referentes às questões.

1 1A																				18
1 H 1,0	2 2A														15 5A	16 6A	17 7A	2 He 4		
3 Li 6,9	4 Be 9														5 B 10,8	6 C 12	7 N 14	8 O 16	9 F 19	10 Ne 20,2
11 Na 23	12 Mg 24,3	3 3B	4 4B		-	6 68	7 7B	8	— 71		10	11 1B	1 2	- 1	13 Al 27	14 Si 28,1	15 P 31	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45	22 Ti 47,	1	/	24 Cr 52	25 Mn 54,9	26 Fe 55	9 0	io	28 Ni 58,7	29 Cu 63,	Z	0 (n 5,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	N	lb	42 Mo 95,9	43 Tc 97	44 Ru 101	R	h	46 Pd 106,4	47 Ag 107,		8 d 2,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57 La 138,9	72 Hf 178,	Т	a \	74 /V 83,8	75 Re 186,2	76 O: 190	s Ir		78 Pt 195,1	79 Au 197		g	81 TI 204,4	82 Pb 207,2	83 Bi 209	84 Po 209	85 At 210	86 Rn 222
87 Fr 223	88 Ra 226	89 Ac 227																		
	Ce F	r N	0 ld	61 Pm	62 Sm	63 Eu	1 0	d	65 Tb	66 Dy	67 H	0	68 Er	69 Tm	Y	b L	u			
9 T	0 9	1 140,9 14 91 9: Pa L		93 Np	94 Pu 242	95 Ar	96 n C	n	158,9 97 Bk 247	98 Cf	5 16 9: E:	9	167,3 100 Fm 257	168, 101 Md	100 I No	2 10 D Li	3			

 	-	 	-	 	 	 	 -												

Nome do(a) candidato(a):_____

1) Suponha que 1,00 mol de moléculas de um gás ideal, em 292K e 3,00 atm, se expanda de 8,00 L a 20,00 L e atinja a pressão final de 1,20 atm por dois caminhos diferentes. (a) O caminho A é uma expansão isotérmica reversível. (b) O caminho B tem duas partes. Na etapa 1, o gás esfria em volume constante até que a pressão atinja 1,20 atm. Na etapa 2, ele é aquecido e se expande contra uma pressão constante igual a 1,20 atm até que o volume atinja 20,00 L e T= 292 K. Determine o trabalho realizado, o calor transferido e a troca de energia interna (*w*, *q* e ΔU) para os dois caminhos.

EXPECTATIVA DE RESPOSTA

(a) De
$$w = -nRT \ln(V_{\text{final}}/V_{\text{inicial}})$$
,
 $w = -(1,0 \text{ mol}) \text{ X } (8,3145 \text{ J. K}^{-1} \cdot \text{mol}^{-1}) \text{ X } (292 \text{ K}) \text{ X } \ln \frac{20,00 \text{ L}}{8,0 \text{ L}}$
 $w = -2,22 \text{ X } 10^3 \text{ J}$
 $w = -2,22 \text{ kJ}$
De $\Delta \mathbf{U} = q + w = \mathbf{0}$,
 $q = -w = +2,22 \text{ kJ}$

(b) *Etapa 1* O resfriamento foi feito sob volume constante, logo nenhum trabalho foi feito.

$$w = 0$$

Etapa 2 De $w = -P_{ext}\Delta V$,
 $w = -(1,20 \text{ atm}) \text{ X } (20,00 - 8,00) \text{ L} = -14,4 \text{ L. atm}$

Converta litro-atmosferas para joules.

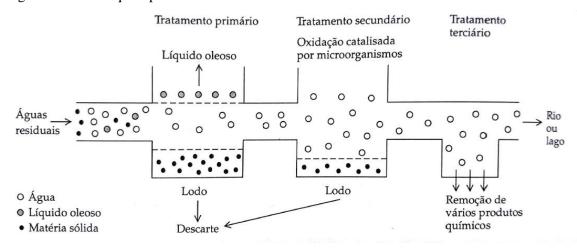
w = - (14,4 L. atm)
$$X\left(\frac{101.325 J}{1 L.atm}\right) = -1,46 X 10^3 J = 1,46 kJ$$

Calcule o trabalho total para o caminho B.

$$\mathbf{w} = 0 + (-1,46) \text{ kJ} = -1,46 \text{ kJ}$$

De $\Delta \mathbf{U} = q + w = 0$,
 $q = -w = +1,46 \text{ kJ}$

2) Em 1989, um adolescente em Ohio foi envenenado com vapor de mercúrio derramado. O nível de mercúrio determinado em sua urina, que é proporcional a sua concentração no organismo, foi de 1,54 mg. L⁻¹. O mercúrio (II) é eliminado do organismo por um processo de primeira ordem que tem meia-vida de 6 dias (6d). Qual seria a concentração de mercúrio (II) na urina do paciente, em miligramas por litro, após 30 dias (30d), se medidas terapêuticas não fossem tomadas?


EXPECTATIVA DE RESPOSTA

De
$$t_{1/2} = (\ln 2)/k$$
 na forma k = (ln 2)/ $t_{1/2}$,

$$k = \frac{\ln 2}{6 d} = \frac{\ln 2}{6} d^{-1}$$

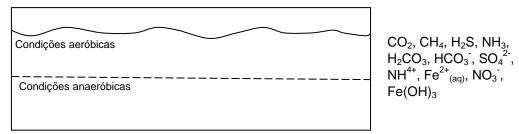
De [A] = [A]₀
$$e^{-kt}$$
,
[A]_t = [A]₀ $e^{-\left\{\frac{(\ln 2)}{6d^{-1}}\right\}X (30 \ d)}$
= (1,54 mg. L⁻¹) $e^{-\left\{(\ln 2)X (30/6)\right\}}$
= **0,05 mg. L**⁻¹

3) A imagem a seguir ilustra as etapas comuns de tratamento de águas residuais. Descrever o funcionamento de cada um dos tratamentos aplicados (primário, secundário e terciário). No caso da última etapa, mencionar 03 tratamentos terciários que podem ser utilizados no tratamento de águas residuais e quais poluentes são eliminados com o uso desses tratamentos.

EXPECTATIVA DE RESPOSTA

Na fase de **tratamento primário** de águas residuais são removidas as partículas maiores – incluindo areia e lodo – o que permite o fluxo lento através de telas e ao longo de uma lagoa. No fundo da lagoa, forma-se lodo de partículas insolúveis, enquanto que, na parte superior, forma-se uma camada superficial de um "líquido oleoso" (um termo que abrange aqui não apenas gordura, óleos e ceras, mas também os produtos formados pela reação do sabão com íons de cálcio e magnésio) menos denso do que a água, que é retirado da superfície.

Após sua passagem através do tratamento primário convencional, a água de esgoto torna-se muito mais clarificada, porém apresenta ainda elevada carga orgânica. Na fase de **tratamento secundário** (ou biológico), grande parte do material orgânico em suspensão, como aquele realmente dissolvido na água, é biologicamente oxidado por microorganismos até dióxido de carbono e água, ou convertido em lodo adicional que pode ser removido com facilidade. Com o objetivo de possibilitar as reações conduzidas pelos microorganismos, à água é aspergida sobre um leito de areia e pedregulho ou sobre um plástico coberto por bactérias anaeróbicas ("filtros de gotejamento"), ou é bem agitada em um reator de aeração ("processo do lodo ativado"). O sistema é mantido bem aerado para acelerar a oxidação. Em essência, mantendo-se de forma deliberada no sistema uma alta concentração de organismos aeróbios, especialmete bactérias, é possível que sejam rapidamente efetuados os mesmos processos de degradação biológica que requereriam semanas para ocorrer em águas abertas. As reações de oxidação biológica do tratamento secundário reduzem a cerca de 10% da carga orgânica original


do esgoto não-tratado. Em alguma extensão ocorre também nitrificação, na qual os compostos nitrogenados orgânicos convertem-se em íons nitrato e dióxido de carbono.

No **tratamento terciário** (avançado ou químico), são removidos produtos químicos específicos das águas parcialmente purificadas, antes de sua desinfecção final. Dependendo do local, o tratamento terciário pode incluir alguns ou todos os seguintes processos:

- Redução da DBO por remoção da maior parte do material coloidal remanescente, usando sais de alunínio, em um processo no qual se forma Al(OH)₃ e que opera da mesma maneira para purificação de água potável;
- Remoção de compostos orgânicos dissolvidos (incluindo o clorofórmio) e de alguns metais pesados, mediante a sua adsorção ao carvão ativado, sobre o qual a água flui;
- Remoção de fosfatos, normalmente por meio de sua precipitação como o sal de cálcio
 Ca₅(PO₄)₃OH, produzido pela adição de cal, Ca(OH)₂;
- Remoção de metais pesados pela adição de íons hidróxido ou sulfeto para formar hidróxidos ou sulfetos metálicos insolúveis;
- Remoção de ferro por aeração efetuada a um pH elevado, com o objetivo de promover sua oxidação para seu estado insolúvel de Fe³⁺, possivelmente em combinação com o uso de um forte agente oxidante, cuja função é destruir os ligantes orgânicos qualantes do íon Fe²⁺, que poderiam impedir sua oxidação.

4) Responder:

a) Colocar as espécies químicas (a direita da figura) segundo a natureza das condições das camadas de água no sistema aquático:

Estratificação estável em camadas de água diferenciadas

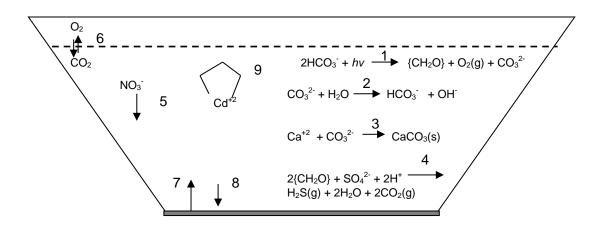
b) Mencionar 2 compostos ou espécies químicas; de enxofre e de nitrogênio, que podem estar presentes nas águas naturais e ser perigosas para a saúde (descrever os problemas que podem causar)?

EXPECTATIVA DE RESPOSTA

a)

Condições aeróbicas:

Condições anaeróbicas:


b)

Gás sulfídrico (H₂S) e Nitrato (NO₃⁻).

Gás sulfídrico: Este gás tóxico paralisa o sistema nervoso que controla a respiração, incapacitando os pulmões de funcionar, provocando asfixia.

Nitrato: Pode aumentar o fator de risco de câncer (sistema digestório, por exemplo).

5) Escrever os nomes dos processos (1-9) que ocorrem constantemente em um sistema aquático?

EXPECTATIVA DE RESPOSTA

- 1- Fotossíntese;
- 2- Ácido base;
- 3- Precipitação;
- 4- Ação microbiana;
- 5- Nitração;
- 6- Troca de gás com a atmosfera;
- 7- Lixiviação;
- 8- Sedimentação;
- 9- Quelação.