Banca de DEFESA: DÉBORA VIRGÍNIA DA COSTA E LIMA

Uma banca de DEFESA de MESTRADO foi cadastrada pelo programa.
DISCENTE : DÉBORA VIRGÍNIA DA COSTA E LIMA
DATA : 12/05/2022
HORA: 15:00
LOCAL: Ambiente Virtual
TÍTULO:

O Uso de Redes Neurais Artificiais na Análise de Dados de Câncer de Pulmão


PALAVRAS-CHAVES:

Câncer de Pulmão, Aprendizado Profundo, Dados Genômicos, Assinatura Gênica, Sobrevida.


PÁGINAS: 75
RESUMO:

O câncer de pulmão representa a principal causa de morte com câncer no mundo, e possui altos níveis de incidência. Assim como outros tipos de câncer, pode ocorrer por diversas causas, de genéticas à ambientais, por isso estudos realizados a partir de diferentes tipos de dados podem ser relevantes para o controle dessa neoplasia, especialmente quando considerados fatores que têm impacto na sobrevivência dos pacientes. No contexto do câncer de pulmão, esse estudo foi desenvolvido para utilizar deep learning a fim de prever a sobrevivência de pacientes. Para tanto foram obtidos dados clínicos e moleculares presentes em bancos de dados do TCGA (The Cancer Genome Atlas) referentes às coortes LUSC (Carcinoma de Células Escamosas do Pulmão) e LUAD (Adenocarcinoma do pulmão), seguido da análise de das alterações genômicas, e aplicação de redes neurais usando como entrada os genes frequentemente mutados para cada coorte, seleção de genes chave e validação com outro banco de dados. As coortes apresentaram diferenças na sobrevida entre si quando submetidas ao método de Kaplan-Meier e ao teste Log-Rank. Na análise genômica, foram selecionados todos os genes com frequência de mutação superior a 15%, sendo encontrados 34 genes para LUAD e 32 para LUSC. A utilização desses genes como entrada nas redes construídas possibilitou a geração das redes LUSC e LUAD com 100% de acurácia, identificando, de acordo com as mutações, se o paciente estava vivo ou morto. Além disso, foi obtida também uma rede LUSC usando como validação um outro banco de dados o LUSC-KR que alcançou 99% de acurácia. Desta forma, este trabalho mostrou que a utilização de genes com mutações frequentes associadas ao uso de deep learning é uma ferramenta robusta e permite predizer a sobrevida de pacientes com câncer de pulmão.


MEMBROS DA BANCA:
Presidente - 347628 - ADRIAO DUARTE DORIA NETO
Interno - 3063244 - TETSU SAKAMOTO
Externa ao Programa - 1365498 - BEATRIZ STRANSKY FERREIRA
Externo à Instituição - TAFFAREL MELO TORRES - UFERSA
Notícia cadastrada em: 03/05/2022 09:52
SIGAA | Superintendência de Informática - | | Copyright © 2006-2022 - UFRN - sigaa24-producao.info.ufrn.br.sigaa24-producao