Banca de QUALIFICAÇÃO: CARLOS ANTONIO RAMÍREZ BELTRAN

Uma banca de QUALIFICAÇÃO de MESTRADO foi cadastrada pelo programa.
DISCENTE : CARLOS ANTONIO RAMÍREZ BELTRAN
DATA : 30/11/2020
HORA: 08:30
LOCAL: Remota - por vídeo conferência
TÍTULO:

Busca da Portabilidade de Modelos através de Transferência de Conhecimento para previsão do rendimento de alunos de graduação baseado nos registros do Moodle


PALAVRAS-CHAVES:

Transferência de Conhecimento; Aprendizado de Máquina; Desempenho Acadêmico; Moodle.


PÁGINAS: 83
RESUMO:

Um dos grandes desafios da educação, nos últimos anos, tem sido prever o desempenho dos alunos de forma certa e confiável, a fim de aplicar diversas estratégias para melhorar as suas deficiências acadêmicas. Desse modo, existem muitos trabalhos e pesquisas centrados em encontrar, de forma individual, modelos de Aprendizado de Máquina (AM), mas poucos utilizam-se do conhecimento adquirido de um curso ou disciplina para prever os resultados de outra. Dessa forma, o principal objetivo deste trabalho é buscar a portabilidade de modelos através da Transferência de Conhecimento, para poder prever o rendimento de alunos de graduação, o que será feito baseando-se nos registros do Moodle extraídos de 35 disciplinas. Através da metodologia aplicada, serão avaliados cada um dos dois tipos de agrupamentos formados pelas disciplinas: os formados de acordo com o curso de graduação e os de acordo com as atividades usadas no Moodle. A extração dos dados de cada agrupamento será realizada a partir dos registros do Moodle, utilizando os seguintes métodos de avaliação: validação cruzada e hold-out. Com isso, será possível saber se essas avaliações, todas executadas sobre os modelos preditivos com o algoritmo J48, tendem a mostrar resultados diferentes em relação à portabilidade de modelos de previsão. Para avaliação, foram desenvolvidos dois cenários para execução de experimentos, de modo que cada experimento é constituído por duas partes: a escolha dos modelos, utilizando o índice AUC ROC para o Experimento 1, e o F-Measure para o Experimento 2; e a validação dos modelos, utilizando o índice Precision, para o Experimento 1, e o Recall para Experimento 2. Os resultados, mesmo em fase avaliativa, permitem afirmar que é possível aplicar a transferência de conhecimento entre modelos de um mesmo grupo em alguns casos.


MEMBROS DA BANCA:
Presidente - 4351681 - JOAO CARLOS XAVIER JUNIOR
Externa ao Programa - 2451906 - ADJA FERREIRA DE ANDRADE
Externo à Instituição - MARCELO DAMASCENO DE MELO - IFRN
Notícia cadastrada em: 12/11/2020 09:24
SIGAA | Superintendência de Informática - | | Copyright © 2006-2021 - UFRN - sigaa20-producao.info.ufrn.br.sigaa20-producao