

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE ENGENHARIA DE CONTROLE E TOMAÇÃO GRADUAÇÃO EM ENGENHARIA MECATRÔNICA

RELATÓRIO FINAL DE ESTÁGIO SUPERVISIONADO.

JOSÉ GERALDO DINIZ JÚNIOR

NATAL- RN Maio / 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE ENGENHARIA DE CONTROLE E TOMAÇÃO GRADUAÇÃO EM ENGENHARIA MECATRÔNICA

RELATÓRIO FINAL DE ESTÁGIO SUPERVISIONADO.

JOSÉ GERALDO DINIZ JÚNIOR

Orientador: Prof. Dr. Andrés Ortiz Salazar – UFRN

Supervisor: Eng.: Werbet Luiz Almeida Da Silva

Natal - RN / 2016

AGRADECIMENTOS:

À Deus, que sempre me deu forças para superar os desafios encontrados durante toda a jornada.

Aos meus pais pela dedicação, confiança e apoio durante meus estudos, e pelo exemplo de vida.

Ao Prof. Dr. Andrés Ortiz Salazar pela oportunidade de estágio e orientação académica.

A todos os professores da UFRN que contribuíram para minha formação.

Lista de llustrações:

Figura 1: Tanque Misturador	3
Figura 2 Tanque Auditor	4
Figura 3 Aquecedor	4
Figura 4 Resistor De Imersão	5
Figura 5 Relé De Estado Sólido	5
Figura 6 Esquemático Elétrico	6
Figura 7 Medidor de Nível VEGASON-62.	6
Figura 8 Medidor de Nível da Conalt	7
Figura 9 Medidores de Vazão	8
Figura 10 Medidor de Temperatura PT100.	8
Figura 11 Software de Configuração dos Sensores de Temperatura	9
Figura 12 Bomba Helicoidal de Deslocamento Positivo BCP	10
Figura 13 Válvula Eletropneumática	10
Figura 14 CLP WEG TPW-03 60HT-A.	11
Figura 15 Topologia do Projeto	12
Figura 16 Protótipo de Simulação do Sistema.	13
Figura 17 Planta Baixa do Projeto	13
Figura 18 Monitorador de Injeção	14
Figura 19 Nova Estrutura do Monitorador de Injeção	15
Figura 20 Tela Inicial do Software	16
Figura 21 Dados do Reservatório: Sistema de Unidades	17
Figura 22 Dados do Reservatório: Gradiente Geotérmico	17
Figura 23 Dados do Reservatório: Modo Automático	18
Figura 24 Dados do Fluido: Sistema de Unidades Default	

Figura 25 Dados do Fluido: Sistema Unidades "Vazão"	19
Figura 26 Dados do Fluido: Preenchimento Manual dos Valores	19
Figura 27 Dados do Poço	20
Figura 28 Dados do Poço: Seleção da Coluna de Produção.	20
Figura 29 Dados do Poço: Seleção da Coluna de Revestimento	21
Figura 30 Dados do Poço: Sistema de Unidade Para o Comprimento do Poço	21
Figura 31. Dados do Poço: Comprimento e Inclinação do Poço Injetor	22
Figura 32. Condutividades Térmicas	22
Figura 33 Condutividades Térmicas: Preenchimento manual.	23
Figura 34 Painel de Controle	23
Figura 35. Janela de Seleção de Arquivos	24
Figura 36. Seleção de Arquivo: Arquivo Carregado Com Sucesso	25
Figura 37. Seleção de Arquivo: Erro no Processo de Carregamento	25
Figura 38 Dados de Injeção	27
Figura 39. Número de Mandris	27
Figura 40 Preenchimento dos campos de Injeção	28
Figura 41 Tela Principal: Botão Executar	28
Figura 42 Resultado da Simulação	29
Figura 43 Resultados Gráficos	30
Figura 44 Resultados Obtidos	31
Figura 45 Perfil de Temperatura	31

Sumário

	A	gradeo	cimentos	i
	Li	ista de	Ilustrações	ii
Sur	ná	rio		iv
	1.	Objeti	νο	1
	2.	Introd	ução	2
	3.	Metod	dologia Utilizada	3
		3.1.	Sistema De Tanques	3
		3.2.	Sistema De Aquecimento:	4
		3.3.	Bloco de Instrumentação	6
		3.4.	Sistema de Bombeamento.	9
		3.5.	Bloco de Atuadores	10
		3.6.	Controladores	11
		4.	Integração do Sistema	12
	5.	Implei	mentação da Interface do Monitorador de Injeção	14
		5.1.	Tela Principal	15
		5.2.	Dados do Reservatório.	16
		5.3.	Dados do Fluido	18
		5.4.	Dados do Poço	19
		5.5.	Condutividade Térmica.	22
		5.6.	Controles	23
		5.6.1	L Dados do Poço	24
		5.6.2	2 Exportar Dados	26
		5.6.3	3 Imprimir Relatório	26
		5.6.4	Importar Dados	26
		5.6.5	5 Executar	26
		5.7.	Dados de Saída	29
		5.8.	Gráficos	29
	6.	Result	ados	31
	7.	Conclu	มรลัด	32
	8.	Refere	encias	33
	9.	Anexo		34

1. Objetivo.

Este relatório tem como objetivo descrever as atividades realizadas durante o Estágio Curricular Supervisionado, realizado no laboratório de avaliação e medidas em petróleo - LAMP, localizado no campo central da Universidade Federal do Rio Grande do Norte – UFRN. As atividades foram desenvolvidas no período de 15 de fevereiro de 2016 a 15 de abril do mesmo ano.

O estágio teve como objetivo, aplicar os conceitos adquiridos durante o curso de graduação em Engenharia Mecatrônica na planta de testes do laboratório, com objetivo específico do controle de vazão em poços injetores utilizados na extração de petróleo, a partir do perfil de temperatura de cada zona de injeção. Durante o período de estágio foram desenvolvidas as seguintes atividades: instalação, calibração e teste dos sensores de vazão, temperatura e nível, programação de controladores lógico programáveis – CLP, e o desenvolvimento de um software utilizando linguagem de programação (Visual Basic for Applications – VBA), responsável por calcular a vazão nos trechos de injeção a partir dos respectivos perfis de temperatura.

2. Introdução.

Com o crescimento da indústria do petróleo, e com o surgimento de novas tecnologias, surge também a necessidade de redução de custos operacionais. A técnica de injeção de água em poços multizonas utilizados na extração de petróleo, é bastante utilizada, pois reduz os custos operacionais de produção, já que este processo utiliza um único poço injetor para injeção simultânea em várias zonas de extração. Contudo, apesar desta técnica apresentar inúmeras vantagens, ela apresenta dificuldades operacionais no que se refere ao acompanhamento e controle individual de vazões nos trechos de injeção.

O procedimento atual adotado para avaliar se a participação de cada zona no total injetado, é a inserção periódica de dispositivos no interior da coluna de injeção (por exemplo: traçadores radioativos ou flowmeters operados com stick-line) para a realização de registros que, depois de interpretados, permitem tal entendimento. Os processos tradicionais, além de custoso, não oferece informação em quantidade e/ou frequência suficientes para um bom acompanhamento da produção dos poços. O problema se agrava na medida em que aumenta o número de poços e de pacotes injetores.

Uma solução para este problema é a introdução de sensores de temperatura ligados por fibra ótica no interior destes poços, o que permite medir o perfil de temperatura ao longo de toda sua extensão. Como a injeção de fluido oriundo da superfície, provoca "contraste" de temperatura nas regiões das zonas submetidas a ela, a interpretação dessas distorções no perfil de temperatura pode permitir a avaliação da participação de cada intervalo injetor no total da vazão injetada.

Esta proposta visa o desenvolvimento de um programa computacional que a partir de um sistema de equações que regem o sistema de medição, tenha a habilidade de interpretar os perfis de temperatura e fornecer a vazão de cada trecho envolvido, proporcionando esta informação de forma rápida e precisa, melhorando de forma eficiente o acompanhamento e controle de vazão nos poços injetores.

3. Metodologia Utilizada.

Para que seja possível a validação da modelagem matemática do projeto, foi desenvolvido um sistema que seja capaz de simular um poço injetor, e que possibilite a coleta de informações reais acerca dos fenômenos físicos envolvidos na determinação de vazão a partir de medições de temperatura.

Devido à complexidade e custo do projeto foi utilizada um trecho da planta de teste existentes no LAMP. O protótipo utilizado é composto por:

- Sistema de tanques;
- Sistema de aquecimento.
- Bloco de Instrumentação;
- Sistema de bombeamento;
- Bloco de atuadores;
- Bloco de controladores;

3.1. Sistema De Tanques.

O sistema de tanques é composto por dois tanques, o tanque misturador e o auditor. O Tanque Misturador, em destaque na figura 1, tem a finalidade de armazenar temporariamente a água que será fornecida ao sistema de injeção, de modo que a água ao passar pelo aquecedor, fique na sua temperatura ideal para realização dos testes.

Figura 1: Tanque Misturador.

O Tanque Auditor, que está sendo demonstrado pela figura 2, é responsável por armazenar a água ao final do teste.

Figura 2 Tanque Auditor.

3.2. Sistema De Aquecimento:

Este sistema é responsável por fornecer energia térmica a água utilizada no processo. Trata-se de um sistema em malha fechada composto de: controlador, sensor e atuadores. A água armazenada no tanque misturador é enviada com o auxílio de uma bomba de cavidade progressiva – BCP, para o cilindro de aquecimento (ver figura 3).

Figura 3 Aquecedor.

Este cilindro nada mais é do que um trecho mais espesso da tubulação, com cerca de 12 polegadas de diâmetro e 4 metros de comprimento, que armazena temporariamente o volume de água a ser aquecido, neste cilindro estão conectados resistores de imersão, que são elementos com um baixo valor de resistência, e que dissipam uma alta potência em forma de calor, estes resistores fazem o papel do atuador na malha de controle do sistema de aquecimento.

Posicionados em contato direto com o fluido do processo, os resistores do tipo tubular (figura 4) são largamente utilizados na indústria petroquímica para soluções em sistemas de aquecimento, tanto para líquidos como para gases. Devido à grande quantidade de calor dissipado pelos resistores, esses equipamentos devem sempre trabalhar completamente imersos no fluido a ser aquecido.

Figura 4 Resistor De Imersão.

O aquecedor conta com um total de 9 resistores como o da figura 4, instalados em sua parede através de conexões rosqueadas, divididos em grupos de 3. Cada resistor possui conexão trifásica com a rede elétrica, resistência interna de 16 ohms por fase, e são conectados em estrela a uma tensão nominal alternada de 380 volts. Três relés de estado sólido trifásicos como o da figura 5 fazem a conexão entre o circuito de sinal (controlador) e o circuito de potência (resistores). A figura 6 mostra o esquema elétrico de ligação para um grupo de três resistores.

Figura 5 Relé De Estado Sólido.

Figura 6 Esquemático Elétrico.

Os relés do projeto são ditos de estado sólido pois são constituídos de chaves semicondutoras que não possuem contatos mecânicos. A principal vantagem destes dispositivos perante aos relés eletromecânicos tradicionais, é que estes podem ser utilizados em ambientes com atmosferas explosivas, pois a comutação das suas chaves não gera faíscamento. Além disso, podem operar em frequências elevadas e possuem maior durabilidade em relação aos de contato mecânico.

3.3. Bloco de Instrumentação.

O sistema de tanques conta com um conjunto de sensores de nível ultrassônicos da marca VEGA modelo VEGASON-62, ver figura 7, utilizados para o monitoramento de nível dos tanques, além de chaves de nível máximo e mínimo da marca CONALT, ver figura 8.

Figura 7 Medidor de Nível VEGASON-62.

O VEGASON 62 é um sensor de ultrassom para a medição contínua de nível. Este tipo de sensor é apropriado para produtos líquidos e sólidos em quase todas as áreas industriais. O transdutor acústico do sensor de ultrassom emite impulsos curtos de ultrassom em direção ao líquido a ser medido. Esses impulsos são refletidos pela superfície do produto e recebidos novamente pelo transdutor acústico como ecos. O tempo entre o envio e o recebimento dos impulsos de ultrassom é proporcional à distância, e consequentemente ao nível do reservatório. O nível do reservatório assim detectado é convertido para um respectivo sinal de saída e emitido como valor de medição.

Figura 8 Medidor de Nível da Conalt.

Medidor de Vazão apresentado na figura 9, tem a função de averiguar se o volume de água que está passando nos dutos, condiz com o volume calculado a partir do perfil de temperatura.

Foram utilizados dois sensores de vazão da marca Tecnofluid do tipo eletromagnéticos, os modelos são: TVM-025 e TVM-50. O primeiro possui medidor para tubulação de 1" e foi instalado no trecho da tubulação em que será estimada a vazão a partir das medições de temperatura, possibilitando a validação da medição de vazão calculada a partir do perfil. O segundo, utilizado para tubulação de 2", será útil para a medição da vazão total injetada no poço. Ambos possuem funções de transmissor e indicador integradas ao dispositivo e são totalmente eletrônicos. Os limites de vazão, são, respectivamente, de 0,53 a 17,06 m³/h para o de 1" e 2,14 a 70,6 m³/h para o de 2".

Figura 9 Medidores de Vazão.

Como já mencionado anteriormente, a metodologia adotada para a validação da modelagem matemática, faz uso da coleta de valores de temperatura em diferentes pontos da tubulação simulando uma coluna de injeção. Cerca de 17 sensores de temperatura precisaram ser adicionados à estrutura do projeto.

Os sensores de temperatura utilizados (Figura 10) são do tipo RTD, PT100, da marca Salcas, os mesmos já possuem transmissores, produzidos pela mesma empresa, modelo TR-321, que geram sinais de 4 a 20 mA correspondentes aos limites de medição configurados nos transmissores.

Figura 10 Medidor de Temperatura PT100.

Os sensores vieram calibrados de fábrica para trabalhar em uma faixa de temperatura de 0 à 70° C. O Fabricante fornece um software que permite a alteração desta faixa de operação, permitindo um melhor ajuste do sensor. O projeto irá trabalhar com valores entre 25 e 65 °C, para obter uma melhor resolução de leitura das variáveis, utilizou-se o software TxConfig II (Figura 11) fornecido pelo fabricante, que se conecta com o instrumento através da porta USB do computador, com o objetivo de redefinir os limites de operação do sensor.

TxConfig II - Versão 1.23	– 🗆 X
Arquivo Configuração Monitoração	Dispositivo Ajuda
8 🗉 🗑 🕼	
TxBlock-USB NP600 NP620 TxMini-DIN	43650 TxMini-M12 TxRail-USB
Informações Gerais	
Número de Série: Versão de Firmware: Modelo:	
Sensor Tipo: Pt100 4 fios	Falha de Sensor Estado da Saída: I Mínimo (< 4 mA) C Máximo (> 20 mA)
Unidade C •C	Correção do Zero
Faixa de Medição Limite Inferior: 25 Limite Superior: 65 Faixa do Sensor -200.0 a 650.0	M ínimo: -8,50 °C Máximo: 8,50 °C Saída
Faixa Mínima: 40,0 °C	r 4a20 mA ⊂ 20a4 mA
<u>E</u> nviar Configuração	Ler Configuração

Figura 11 Software de Configuração dos Sensores de Temperatura.

3.4. Sistema de Bombeamento.

A Bomba utilizada no projeto e do tipo helicoidal de deslocamento positivo (ver figura 12). O protótipo conta com um conjunto de três bombas BCP, a primeira garante a circulação de água entre o tanque misturador e o sistema de aquecimento, a

segunda e responsável pelo sistema de injeção, a última é utilizada para bombear a água entres os tanques Auditor e Misturador após o fim do processo.

O controle do sistema de bombeamento será realizado por um inversor de frequência, bem como um conjunto de válvulas pneumáticas responsáveis pelo controle de vazão nas linhas de distribuição.

Figura 12 Bomba Helicoidal de Deslocamento Positivo. - BCP.

3.5. Bloco de Atuadores.

A planta de teste conta com um conjunto de válvula eletropneumáticas, responsáveis pelo direcionamento e controle do fluido entre as tubulações e tanques envolvidos. Cada tanque conta com um conjunto válvulas eletropneumáticas ligadas em série com válvulas de acionamento manual (caso seja necessário a intervenção manual no processo, por exemplo falha no sistema pneumático). O sistema pneumático e alimentado por um compressor da marca Schulz de 20 BAR.

Figura 13 Válvula Eletropneumática.

3.6. Controladores

Os sensores instalados no laboratório trabalham com sinais de corrente de 4 a 20 mA para transmitir as informações das grandezas do sistema para a estação de monitoramento. O projeto tem por objetivo utilizar essas informações em um *software* especializado para que sejam realizadas as análises necessárias, logo, toda a estrutura de instrumentação deve ser conectada a um controlador lógico-programável (CLP). O controlador utilizado para realizar o controle do sistema foi o CLP da empresa WEG, modelo TPW-03 60HT-A (ver figura 14), associado a um CLP da SMAR para controle dos inversores de frequência, e um controlador universal da Novus modelo N2000 para controle de temperatura.

Figura 14 CLP WEG TPW-03 60HT-A.

Trata-se de um CLP modular, em que a unidade básica possui 36 entradas e 24 saídas digitais e permite a comunicação em rede através de uma interface RS-485. A WEG disponibiliza um software de programação do dispositivo através da linguagem LADDER, o TPW03-PCLINK. Através do programa é possível configurar os parâmetros para operação do CLP, comunicando-o com o computador via USB.

4. Integração do Sistema.

Após a descrição dos principais equipamentos abordados na criação do protótipo, este capítulo trada da integração entres todos os equipamentos envolvidos no sistema. A topologia simplificada no projeto pode ser visualizada na figura 15.

Figura 15 Topologia do Projeto.

Devido à complexidade e custo de implementação, o sistema foi modelado em uma caixa de concreto e areia, simulando o ambiente do poço, (ver figura 16). Em seguida e exibida a planta baixa do projeto.

A partir da leitura dos sensores de temperatura instalados no protótipo, será gerado um banco de dados que será interpretado pelo software desenvolvido para o cálculo das vazões injetadas.

Figura 16 Protótipo de Simulação do Sistema.

LEGENDA A1-A2 Sensor de vazão eletromagnético B1-B17 Sensor de temperatura do tipo PT100

Figura 17 Planta Baixa do Projeto.

Color de passagem com protonadade de 0.3 m Color de comando Concerto de 1.3 m Color de comando Concerto de instrumentado Concerto de instrumentado Concerto de instrumentado Concerto de instrumentado Concerto de instrumentado

5. Implementação da Interface do Monitorador de Injeção.

A interface do monitorador de injeção foi desenvolvida com base no sistema de equações que regem o sistema físico do protótipo, o software foi escrito utilizando linguagem de programação estruturada (Visual Basic Applications – VBA). A primeira versão do software pode ser visualizada na figura 18.

Esta primeira versão conta com uma única tela contendo todos os dados envolvidos no processo de medição, bem como botões para facilitar a interação software-usuário, os botões permitem a inserção de novos poços no processo de importação de dados de medição de temperatura, bem como a impressão de relatório em formato PDF, o relatório consiste em um resumo facilitado e documentado dos dados de entrada e saída de cada poço que foi monitorado.

	Monitorador de Inj	eção			
	DADOS DO RESERVÁTORIO	DADOS	DO FLUIDO	DADOS DO F	P0Ç0
	Gradiente geotérmico 0,021100 C/m 💌	Vazão Inicial Viscosidade Massa específica da água	200 m²łd ▼ 1,1 cP ▼ 1000,0 kg/m² ▼	Coluna de produção 23/8° - 4,85 lb/k ID: 1,9950 pol OD: Revestimento: 7° - 23,0 lb/k	▼ 2,375 pol
L	FERRAMENTAS	Capacidade Calorifica	1,005 kcal/kg·(🔻	ID : 6,366 pol OD: Raio do poço	7,000 pol 4,375 pol
	Importar dados de um novo poço Abrir Impressão de Relatório Imprimir	•		Comprimento Inclinação Gradiente de Pressão	162,0 m ▼ 90,0 ° • 0,0000 psi/ht ▼

Figura 18 Monitorador de Injeção.

Ao longo do desenvolvimento do *software*, constatou-se a necessidade de alteração na interface do mesmo. A versão utilizada até então, estava dividida em sete áreas contidas em uma única tela: Dados do reservatório, Dados do Fluido, Dados do Poço, Dados de Temperatura, Condutividades Térmicas, Dados de Tempo e Dados de Injeção. Toda estrutura da interface foi desenvolvida no Excel utilizando como base a linguagem Visual Basic for Applications (VBA), para implementação do sistema de

equações, é um conjunto de planilhas para exibição de dados e interação com o usuário final.

A nova estrutura foi desenvolvida utilizando como base o sistema UserForm, disponível no Excel. O Userform é um formulário personalizável capaz de interagir com a folha de cálculo. Aparece sobre a forma modal, ou seja, fica sobreposto à folha de cálculo, não permitindo qualquer alteração manual nas planilhas de cálculo, evitando que o operador do sistema altere a estrutura do software de forma acidental. As modificações nas folhas de cálculo e demais tabelas são realizadas por meio de rotinas implementadas via linguagem de código.

A Figura 19 mostra a nova estrutura do Software, a tela principal foi dividida em um conjunto de abas, possibilitando a separação dos dados de entrada e saída.

SoftWare - Monitorador De Injeção							×
Monitor	ador de Injeçá	ão					
Dados De Entrada Dados De Injeção Dados De Sa	ída Gráficos Dados Do Poço						
DADOS DO RESE	RVÁTORIO	DADOS	DO FLUIDO			CONTR	OLES
Gradiente Geotérmico 0,0211	°C/m 💌	Vazão Inicial Viscosidade	200	m²/d	• •	Importar Dados	Exportar Dados
Calcu	lar Gradiente Geotérmico	Massa Especifica Da Água Capacidade Calorifica	1000	kg/mª kcal/kg°C	- - -	Abrir Arquivo Imprimir	Apagar Dados Sair
		Temperatura Do Fluido na S	uperfície 39,	7	°C	Exe	cutar
DADOS DO	POÇO	CONDUTIVID	ADES TÉRM	IICAS		ESPAÇO PA	RA ALARME
Coluna De produção 230 ID 1,995 pol OD Coluna De Revestimento 7"	8" - 4,85 lb/ft 2,375 pol - 23,0 lb/ft	Cond. Térmica Fluido Cond. Térmica Reservátoric Cond. Térmica Tubulação	0,339 1,4 25	BTU/h-ft.°F BTU/h-ft.°F BTU/h-ft.°F	•		
Raio Do poço 4.33 Profundidade 162 Inclinação 90	75 pol	Cond. Térmica Revestiment Cond. Térmica Cimento	0 25 0,42	BTU/h-ft-°F BTU/h-ft-°F	•		

Figura 19 Nova Estrutura do Monitorador de Injeção.

5.1. Tela Principal.

Após a inicialização do software será exibido a tela principal do programa (ver figura 20), esta tela encontra-se dividida em subáreas responsáveis por receber os paramentos e configurações iniciais do programa.

SoftWare - Monitorador De Injeção						>
Moni	torador de Injeçã	ăo				
Dados De Entrada Dados De Injeção Dados DO F	dos De Saída Gráficos Dados Do Poço RESERVÁTORIO	DADOS DO FI	LUIDO		CONTR	OLES
Gradiente Geotérmico	°C/m ▼ Calcular Gradiente Geotérmico	Vazão Inicial Viscosidade Massa Especifica Da Água Capacidade Calorifica Temperatura Do Fluido na Superfici	mº/d cP kg/m³ kcal/kg°C ie 39,7	• • • • •	Importar Dados Abrir Arquivo Imprimir Exec	Exportar Dados Apagar Dados Sair Sutar
DADOS	DO POÇO	CONDUTIVIDADES	TÉRMICAS		ESPAÇO PAR	RA ALARME
Coluna De produção ID pol Coluna De Revestimento ID pol Raio Do poço Comprimento Inclinação Gradiente de Pressão	2 38" - 4,85 lb/ft ▼ OD pol 7 " - 23,0 lb/ft ▼ OD pol m ▼ 0 n pol ▼ 0 pol	Cond. Térmica Fluido Cond. Térmica Reservátorio Cond. Térmica Tubulação Cond. Térmica Revestimento Cond. Térmica Cimento	BTU/h-ft.°F BTU/h-ft.°F BTU/h-ft.°F BTU/h-ft.°F BTU/h-ft.°F			

Figura 20 Tela Inicial do Software.

5.2. Dados do Reservatório.

Esta área, é responsável pelo recebimento do campo referente ao gradiente geotérmico, este campo pode ser preenchido de forma manual, ou automática.

Antes de inserir o valor do gradiente geotérmico, o usuário deve escolher o sistema de unidades a ser utilizado. O sistema utilizado por default e o " °C/m ", o programa permite que o usuário altere o sistema de unidade para " °F/ft ", utilizando a caixa de combinação localizada ao lado direito do campo onde será inserido o valor do gradiente. A figura 21 exibe em destaque a caixa de combinação que permite a modificação de unidades.

e Geotérmico °C/m	liente Geotérmico
°F/ft	
Calcular Grac	

Figura 21 Dados do Reservatório: Sistema de Unidades.

Após a escolha do sistema de unidades o usuário deve optar por preencher o campo de forma manual ou automática.

Modo Manual: o usuário deve inserir o valor do gradiente geotérmico no campo em destaque na figura 22, de acordo com o sistema de unidades escolhido.

Figura 22 Dados do Reservatório: Gradiente Geotérmico.

Modo Automático: o usuário deve pressionar o botão " Calcular Gradiente Geotérmico", este comando, utiliza uma função interna, que a partir dos dados referentes ao poço injetor, calcula o gradiente geotérmico. A figura 23 exibe em destaque, o botão que deve ser pressionado para que o software calcule de forma automática o valor do gradiente geotérmico.

0,0211	°C/m	-
Calcular	Gradiente Geotér	mico

Figura 23 Dados do Reservatório: Modo Automático.

5.3. Dados do Fluido.

Esta área, é responsável pelo recebimento dos campos referentes ao fluido utilizado no processo de injeção, estes campos podem ser preenchidos de forma manual, ou utilizando a importação de dados de utilizados em simulações anteriores (ver item 5.10).

Inicialmente o usuário deve escolher o sistema de unidades a ser utilizado na execução do programa. Por default o sistema inicia o sistema de unidades conforme exibido na figura 24.

Vazão Inicial	m³/d	
Viscosidade	сР	
Massa Especifica Da Água	kg/m³	-
Capacidade Calorifica	kcal/kg°C	1

Figura 24 Dados do Fluido: Sistema de Unidades Default.

O usuário pode optar por mudar o sistema de unidades selecionando o sistema a partir da caixa de combinação disponível no software. A figura 25 destaca a mudança de unidade para o sistema de vazão.

Vazão Inicial	m ^s /d
Viscosidade	m³/d bbl/d
Massa Especifica Da Água	kg/m³
Capacidade Calorifica	kcal/kg°C

Figura 25 Dados do Fluido: Sistema Unidades "Vazão".

O mesmo procedimento pode ser utilizado para os campos de viscosidade, massa específica e capacidade calorífica. Após a escolha do sistema de unidade, os campos referentes a vazão inicial, viscosidade, massa específica, capacidade calorifica e temperatura do fluido na superfície, devem ser inseridos de acordo com o sistema de unidades escolhido.

Caso o usuário escolha por importar os dados, o sistema seleciona o sistema de unidades de forma automaticamente com base no sistema de unidades importados. A figura 26 mostra o preenchimento dos campos de forma manual.

DADOS DO FLUIDO						
Vazão Inicial	200	m³/d 🔹	•			
Viscosidade	1,1	сР	•			
Massa Especifica Da Água	1000	kg/m³	·			
Capacidade Calorifica	1,005	kcal/kg°C	•			
Temperatura Do Fluido na Superfície 39,7 °C						

Figura 26 Dados do Fluido: Preenchimento Manual dos Valores.

5.4. Dados do Poço.

Esta área aborda os principais dados referentes ao poço injetor, a figura 27 exibe os campos após o processo de inicialização. O sistema inicializa preenchendo os campos coluna de produção e coluna de revestimento com base em um banco de dados interno do programa.

DADOS	DO POÇO
Coluna De produção	2 3/8'' - 4,85 lb/ft 💌
ID pol	OD pol
Coluna De Revestimento	7 " - 23,0 lb/ft 🔹
ID pol	OD pol
Raio Do poço	pol
Comprimento	m 💌
Inclinação	0
Gradiente de Pressão	psi/ft 💌

Figura 27 Dados do Poço.

O usuário deve selecionar na caixa de combinação da coluna de produção, os valores referentes a diâmetro interno e externo do poço, feita a seleção, o software preenche automaticamente os campos ID e OD equivalentes a " Diâmetro Interno" e Diâmetro Externo", ver figura 28.

DADOS	DO POÇO	DADOS	DO POÇO
Coluna De produção ID pol Coluna De Revestimento ID pol	2 7/8" - 6,85 lb/ft 2 3/8" - 4,85 lb/ft 2 3/8" - 6,85 lb/ft 2 7/8" - 6,85 lb/ft 2 7/8" - 10,40 lb/ft 3 1/2" - 9,5 lb/ft 3 1/2" - 13 30 lb/ft 3 1/2" - 13 30 lb/ft	Coluna De produção ID 2,441 pol Coluna De Revestimento	2 7/8" - 6,85 lb/ft ▼ OD 2,875 pol 7 " - 23,0 lb/ft ▼
Raio Do poço	3 1/2" - 15,50 lb/ft 4" - 11,85 lb/ft	Raio Do poço	pol
Comprimento		Comprimento	m
Inclinação Gradiente de Pressão	o psi/ft	Inclinação Cradiente de Bressão	0
		Gradiente de Pressão	psi/ft 💌

Figura 28 Dados do Poço: Seleção da Coluna de Produção.

Após a seleção da coluna de produção, o usuário deve selecionar a opção adequada referente a coluna de revestimento do poço. O sistema preenche automaticamente os campos referentes a ID " Diâmetro Interno", OD " Diâmetro Externo", e Raio do Poço, ver figura 29.

DADOS	DO POÇO	DADOS	DO POÇO
Coluna De produção	2 7/8" - 6,85 lb/ft 💌	Coluna De produção	2 7/8" - 6,85 lb/ft
) 2,441 pol	OD 2,875 pol	ID 2,441 pol	OD 2,875 pol
Coluna De Revestimento	7 " - 23,0 lb/ft 💌	Coluna De Revestimento	7 " - 23,0 lb/ft
ID pol	6 5/8" - 28,0 lb/ft 6 5/8" - 32,0 lb/ft	ID 6,366 pol	OD 7 pol
Raio Do poço	7 " - 20,0 lb/ft 7 " - 23,0 lb/ft	Raio Do poço	4,375 pol
omprimento	7 " - 26,0 lb/ft 7 " - 29 0 lb/ft	Comprimento	m
nclinação	7 " - 32,0 lb/ft 7 " - 35,0 lb/ft	Inclinação	0
Gradiente de Pressão	psi/ft v	Gradiente de Pressão	psi/ft

Figura 29 Dados do Poço: Seleção da Coluna de Revestimento.

Em seguida o usuário deve informar o comprimento e inclinação do poço, o sistema de unidades padrão para profundidade e o metro "m", caso o usuário necessite mudar o sistema de unidades, basta selecionar a caixa de combinação em destaque na figura 30, e alterar o sistema para "ft".

DADOS	DO POÇO
Coluna De produção	2 7/8'' - 6,85 lb/ft
ID 2,441 pol	OD 2,875 pol
Coluna De Revestimento	7 " - 23,0 lb/ft 💌
ID 6,366 pol	OD 7 pol
Raio Do poço	4,375 pol
Comprimento	m
Inclinação	m ft
Gradiente de Pressão	psi/ft 💌

Figura 30 Dados do Poço: Sistema de Unidade Para o Comprimento do Poço.

A figura 31 mostra o preenchimento dos campos comprimento e inclinação do poço injetor.

DADOS	DO POÇO
Coluna De produção	2 3/8" - 4,85 lb/ft 💌
ID 1,995 pol	OD 2,375 pol
Coluna De Revestimento	7 " - 23,0 lb/ft 💌
ID 6,366 pol	OD 7 pol
Raio Do poço	4,375 pol
Comprimento	162 m 💌
Inclinação	90
Gradiente de Pressão	psi/ft •

Figura 31. Dados do Poço: Comprimento e Inclinação do Poço Injetor.

O gradiente de pressão é calculado automaticamente quando os dados do poço são carregador no sistema, (ver item 5.6.4).

5.5. Condutividade Térmica.

Esta seção trata dos valores referentes aos tipos de condutividades térmicas, envolvidas no processo. A figura 32 exibe à área de condutividades térmicas após a inicialização do software.

DES TÉRMI	ICAS
	BTU/h-ft-°F ▼

Figura 32. Condutividades Térmicas.

O sistema utiliza como default o sistema de unidades "BTU/h-ft-°F", (ver figura 32). Caso seja necessário a mudança do sistema de unidades, o usuário poderá realizar à alteração a partir da caixa de combinação referentes ao sistema de unidades desta seção. Após a escolha do sistema de unidades, o usuário deve fornecer os respectivos valores correspondentes a cada tipo de condutividade utilizada. O preenchimento destes campos pode ser feito a partir de um arquivo importado pelo usuário, (ver item 5.10).

A figura 33 exibe os campos desta seção inseridos de forma manual.

CONDUTIVIDADES TÉRMICAS			
Cond. Térmica Fluido	0,339	BTU/h-ft-°F 💌	
Cond. Térmica Reservátorio	1,4	BTU/h-ft-°F ▼	
Cond. Térmica Tubulação	25	BTU/h-ft-°F 🔹	
Cond. Térmica Revestimento	25	BTU/h-ft-°F ▼	
Cond. Térmica Cimento	0,42	BTU/h-ft-°F ▼	

Figura 33 Condutividades Térmicas: Preenchimento manual.

5.6. Controles.

Este tópico aborda as funcionalidades do sistema de controle do software, abordando os seguintes temas: Dados do Poço, Importar Dados, Imprimir Relatório, Exportar Dados, Apagar Dados, Sair e Executar.

A figura 34 exibe a seção referente ao painel de controle do software.

OLES
Exportar Dados
Apagar Dados
Sair
utar

Figura 34 Painel de Controle.

5.6.1 Dados do Poço.

Esta seção trata de como deve ser feita a importação dos dados do poço, necessários para o processo de cálculo da vazão a partir do perfil de temperatura.

O usuário deve pressionar o botão:

Dados	Do	Poco	
Dados	D0	POÇO	

Em Seguida, uma janela de seleção de arquivos será exibida, (ver figura 35). O usuário deve navegar até o diretório onde encontra-se o arquivo com os dados poço, selecionar o arquivo e pressionar o botão abrir.

: Injeção								×
Monit	orade	X Abrir				×		
De Injeção Dados	s De Saída Gr	🔶 🔶 👻 🕇 📙 « Aqu	uivos VBA ⇒ Dados do Poço	v ひ Pesquisar Dados	do Poço 🧳	ρ		
OS DO RI	ESERV	Organizar 👻 Nova past	a		- 🔳	8	CONTROLES	
érmico 0,022	11 Calcular Gra	Ette Computador A360 Drive Area de Trabalhe Documentos Documentos Dovnloads Imagens Músicas Uráces Disco Local (Cs) Armuioss (Es)	CAM-041.bx				Dados Do Poço Exportar Dados Importar Dados Apagar Dados Imprimir Relatório Sair Executar	
		🔐 Unidade de CD (- 1		
lução	2 3/8" - 4,85	🔿 Rede 🗸 🗸				_		
pol	OD 2,3	Nome	do arquivo: CAM-041.txt	✓ Text Files (*.txt)		~		
estimento	7 " - 23,0		Ferramen	tas 🔻 Abrir	Cancelar			
pol	OD 7	pol	Cond. Térmica Revestimento	25 BTU	/h-ft-°F ▼			
	4,375	pol	Cond. Térmica Cimento	0,42 BTU	/h-ft-°F ▼			
	162	m 💌						
	90	0						
ressão	0,432	psi/ft 🔹						

Figura 35. Janela de Seleção de Arquivos.

Se o procedimento tiver ocorrido com êxito uma mensagem será exibida informando que os arquivos foram carregados com sucesso, ver figura 36. Caso ocorra falha ao carregar o arquivo, será exibido uma mensagem informado falha ao carregar o arquivo, desta forma o usuário deverá realizar novamente o procedimento de seleção do arquivo, ver figura 37.

DADOS	DO FLUIDO	1		CONTR	ROLES
Vazão Inicial Viscosidade Massa Especifica Da Água	200 1,1 1000	m³/d cP kg/m³	•	Dados Do Poço Importar Dados	Exportar Dados Apagar Dados
Capacidade Calorifica Microsoft Excel	1 005 × 39;	kcal/kg°C	∙ °C	Imprimir Relatório Exe	Sair cutar
	ок П	IICAS		ESPAÇO PAI	RA ALARME
Cond. Térmica Fluido Cond. Térmica Reservátorio	0,339	BTU/h-ft-°F BTU/h-ft-°F	•		
Cond. Térmica Tubulação Cond. Térmica Revestimento	25 25	BTU/h-ft-°F BTU/h-ft-°F	•		
Cond. Térmica Cimento	0,42	BTU/h-ft-°F	•		

Figura 36. Seleção de Arquivo: Arquivo Carregado Com Sucesso.

DADOS DO FLUIDO			CONTR	OLES	
Vazão Inicial	200	m³/d	•		Europe Dada
Viscosidade	1,1	сР	•	Dados Do Poço	Exportar Dados
Massa Especifica Da Água	1000	kg/m [°]	•	Importar Dados Apagar Dad	
Capacidade Calorifica	1 005	kcal/kg°C	•	Imprimir Relatório Sair	
Microsoft Excel	×		_₀C	Exec	utar
Erro: Falha No Carregamento	Dos Arquivos !				
		ICAS	_	ESPAÇO PAR	A ALARME
	ОК				
Cond. Térmica Fluido	0,339	BTU/h-ft-°F	•		
ond. Térmica Reservátorio	1,4	BTU/h-ft-°F	•		
Cond. Térmica Tubulação	25	BTU/h-ft-°F	•		
Cond. Térmica Revestimento	25	BTU/h-ft-°F	•		

Figura 37. Seleção de Arquivo: Erro no Processo de Carregamento.

5.6.2 Exportar Dados.

O software permite o usuário realizar a exportação dos dados utilizados na simulação atual, permitido que o usuário carregue os dados no software em simulação futuras sem a necessidade de inserir os dados novamente no sistema.

5.6.3 Imprimir Relatório.

Após a execução do software o programa permite a geração de um relatório no formato PDF informando os principais parâmetros utilizados no processo de simulação, bem como os valores de vazão calculado em cada trecho utilizado.

O relatório gerado em um processo de simulação encontra-se no anexo deste trabalho.

5.6.4 Importar Dados.

O programa permite a importação dos dados gerados em simulações anteriores, dessa forma o usuário pode carregar no programa todo os dados que foram exportados de uma simulação anterior agilizando o processo de simulação.

5.6.5 Executar.

Antes de executar a simulação, o usuário deve fornecer os trechos iniciais e finais de medição de temperatura, para isso o usuário deve selecionar na tela principal a aba "Dados de Injeção", a figura a seguir exibe uma nova tela onde será informado os valores necessários para simulação.

SoftWare - Monitorador De Injeção				×
Monitora	dor de Injeção			
Dados De Entrada Dados De Injeção Dados De Saída) Gráficos Dados Do Poço			1
Número De Mandris	•			
Profundidade Do Mandris (m).	Profundidade Dos Trech Inicial. Final.	os Temperatura I Inicial.	Dos Trechos Final.	

Figura 38 Dados de Injeção.

Nesta tela o usuário deverá fornecer o número de mandris do poço injetor, o software permite a seleção de no máximo 10 mandris de injeção. Após informado o número de mandris o software exibe um conjunto de campos referentes a profundidade do mandril, a profundidade inicial e final de cada trecho, e a temperatura inicial e final de cada trecho, (ver figura 39).

De Entrada Dad	os De Injeção Dados De Saíd	la Gráficos Dados Do Poço				
rofundidade	Do Mandris (m)	Profundidade	Dos Trechos Final	Temperatura I Inicial	Dos Trechos Final	
1.	m	m	m	°C	°C	
2.	m	m	m	°C	°C	
3.	m	m	m	°C	°C	
4.	m	m	m	°C	°C	
5.	m	m	m	°C	°C	
6.	m	m	m	°C	°C	
7.	m	m	m	°C	°C	
8.	m	m	m	°C	°C	
9.	m	m	m	0°	°C	
10.	m	m	m	°C	°C	

Figura 39. Número de Mandris.

Após a seleção e preenchimento dos campos, (ver figura 40), o usuário pode retornar para a tela principal e pressionar o botão executar, (ver figura 41).

SoftWare - I	Monitorador De In	ijeção									
	Monitorador de Injeção										
Dados De E	Dados De Entrada Dados De Injeção Dados De Saida Gráficos Dados Do Poço										
Núr	nero De Man	idris 2	•								
Profe	undidade Do	Mandris (m).	Profun Inicial.	didad	e Dos Trechos Final.	5	Tempe Inicial.	ratura	Dos Trechos Final.		
1.	512	m	400	m	450	m	39,82	°C	39,93	°C	
2.	623	m	530	m	570	m	40,12	°C	40,36	°C	

Figura 40 Preenchimento dos campos de Injeção

SoftWare - Monitorador De Injeção						>
Moni	torador de Injeçá	ão				
Dados De Entrada Dados De Injeção Da DADOS DO I	dos De Saída Gráficos Dados Do Poço RESERVÁTORIO	DADOS	DO FLUIDO		CONTR	ROLES
Gradiente Geotérmico 0.0	0211 C/m ▼ Calcular Gradiente Geotérmico	Vazão Inicial [Viscosidade [Massa Especifica Da Água Capacidade Calorifica [Temperatura Do Fluido na S	200 1,1 1000 1,005 uperficie 39,	m²/d • cP • kg/m² • kcal/kg°C • 7 °C	Importar Dados Dados Do Poço Imprimir Exe	Exportar Dados Apagar Dados Sair cutar
DADOS	DO POÇO	CONDUTIVIDA	ADES TÉRN	IICAS	ESPAÇO PAI	RA ALARME
Coluna De produção ID 1,995 pol Coluna De Revestimento ID 6,366 pol Raio Do poço Comprimento Inclinação Gradiente de Pressão	2 3/8" - 4,85 lb/ft • OD 2,375 pol 7 " - 23,0 lb/ft • OD 7 pol 4,375 pol 162 m • 90 ° 0,432 psi/ft •	Cond. Térmica Fluido Cond. Térmica Reservátorio Cond. Térmica Tubulação Cond. Térmica Revestiment Cond. Térmica Cimento	0,339 1,4 25 0 25 0,42	BTU/h-ft.°F v BTU/h-ft.°F v BTU/h-ft.°F v BTU/h-ft.°F v BTU/h-ft.°F v		

Figura 41 Tela Principal: Botão Executar.

5.7. Dados de Saída.

A partir do sistema de equações implementados no software, o programa permite calcular a vazão estimada em cada trecho de injeção a partir do seu respectivo perfil de temperatura, (ver figura 42).

re - Monito	rador De Injeção							
	Mo	nitora	ador	de Ini	ecão			
	MICI	DarkerDarfel		ue inj	eçao			
A Entraca	l naces ne triječao	Deutos de Jen	uranco	s Dados Do Poço	1			
Prof	undidade Do	Mandris (m).	Vazões Ca	lculadas			
1.	512	m	1.	69,2190	m³/d			
2.	623	m	2.	58,8398	m³/d			

Figura 42 Resultado da Simulação.

5.8. Gráficos

Esta seção exibe os resultados obtidos no processo de análise dos perfis de temperatura do poço em função da profundidade do mandril. A aba destinada a exibição dos gráficos permite o usuário escolher qual trecho de injeção será exibido no gráfico, bem como o valor do gradiente geotérmico e a profundidade de cada mandril injetor.

Figura 43 Resultados Gráficos.

6. Resultados.

Não foi possível realizar o teste de validação do protótipo pois o mesmo ainda encontrasse em construção, desta forma para validar o funcionamento do software foi utilizado um banco de dados referentes ao sistema de monitoramento de poço injetor localizado no Canto do Amaro, este poço possui dois mandris injetores.

Após a importação dos dados referentes ao poço injetor 7-CAM-0165 a ser analisado, foram obtidos os respectivos valores de vazão em cada mandril, os resultados podem ser vistos na figura 44. A figura 45 exibe o perfil de temperatura nos dois trechos, o relatório gerado pelo programa encontra-se no anexo deste documento.

Profu	undidade D	Vazões Calculadas			
1.	512	m	1.	69,2190	m³/d
2.	623	m	2.	58,8398	m³/d

Figura 44 Resultados Obtidos.

Figura 45 Perfil de Temperatura.

7. Conclusão.

No período a que se refere este relatório, as atividades relacionadas ao protótipo de Monitoramento de Injeção compreenderam etapas que visam o início das operações de validação da teoria de medição de vazão. Essas atividades continuarão, juntamente com o desenvolvimento do supervisório por outros estagiários do projeto, o que permitirá realizar testes finais nas próximas etapas. Desta forma o objetivo principal do estágio de desenvolver uma ferramenta computacional para monitoramento de injeção em poços multizona, foi alcançado com êxito.

8. Referencias.

ALVES, I. N., ALHANATI, F. J. S. & SHOHAM, O. 1992. A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines. *SPE Production En gineering*, 7,363-367

COULTER, D. M. & BARDON, M. F. 1979. Revised Equation Improves Flowing Gas Temperature Predicition. Oil & Gas J.

GITOTTI, L. J.; NISHIMURA, V. S.; MESQUITA, M. A. Simulação em planilhas para programação de ordens de produção em sistemas Job Shop. XXXI Encontro Nacional de Engenharia de Produção, Belo Horizonte, 2011.

MIGLIOLI, M.; OSTANEL, L. H.; TACHIBANA, W. K. Planilhas eletrônicas como ferramentas para apoio à decisão e geração de conhecimento na pequena empresa. p. 8 XXIV Encontro Nacional de Engenharia de Produção, Florianópolis, 2004.

9. Anexo.

Monitorador de Injeção de Água								
Nome do poço: Data:								
DAD	OS DO RESE	RVATÓRIO						
Gradiente geotérmico		0,0211	°C/m					
DADOS DO FLUIDO								
Vazão inicial Viscosidade Massa específica da água Capacidade calorífica	200 m³/d 1,1 cP 1000 kg/m³ 1,005 kcal/kg.C							
	DADOS DO F	90Ç0						
Coluna de Produção:	ID: ID:	1,995 pol 6,366 pol	2,375 pol 7 pol					
Revestimento:								
Raio do poço:			4 375 nol					
Comprimento:			162 m					
Inclinação:			102 111					
90 º DADOS DE INJEÇÃO								

DADOS DE TEMPO E TEMPERATURA

Tempo de injeção:	25920 h
Temperatura do fluido na superficie:	39,7 °C

CONDUTIVIDADES TÉRMICAS

Condutividade Térmica do Fluido:	0,339 BTU/h-ft-°F
Condutividade Térmica do Reservátorio:	1,4 BTU/h-ft-°F
Condutividade Térmica da Tubulação:	25 BTU/h-ft-°F
Condutividade Térmica do Revestimento:	25 BTU/h-ft-°F
Condutividade Térmica do Cimento:	0,42 BTU/h-ft-°F

VAZÕES CALCULADAS EM CADA MANDRIL								
Quantidade de mandris no poço: 2 mandr								
Profundidade	dos mandris:							
		Profundidade dos trechos:	Temperatura dos trechos:					
1º mandril	512 m	Vazão Injetada:	69,21905 m³/d					
2º mandril	623 m	Vazão Inietada:	58.8398 m³/d					

		Inicial:	Final:	Inicial:	Final:
1º	512 m	400 m	450 m	39,82 °C	39,93 °C
2º	623 m	530 m	570 m	40,12 °C	40,36 °C

