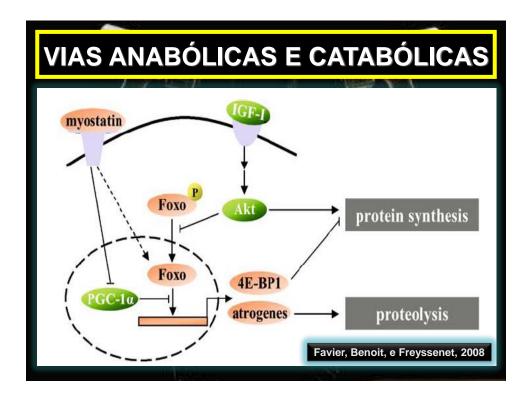
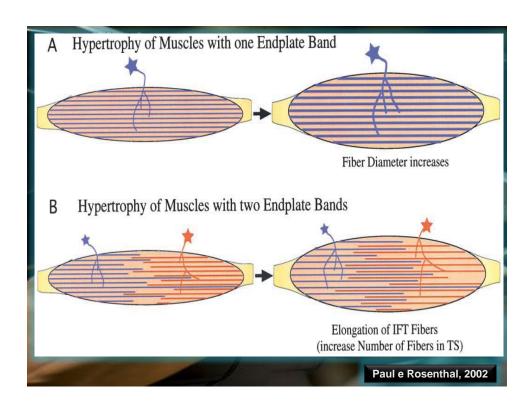
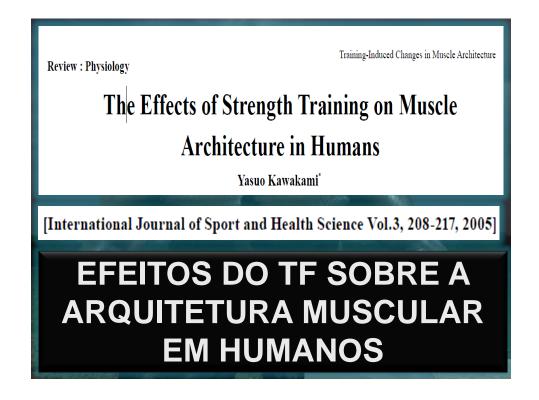
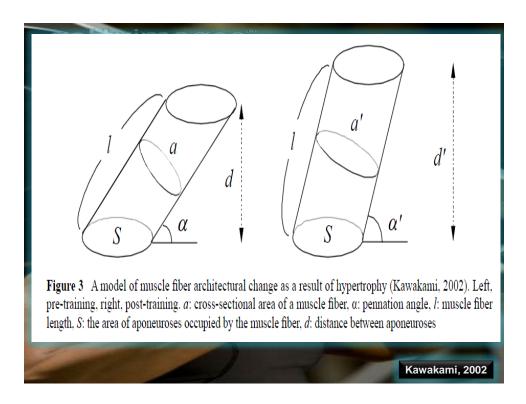


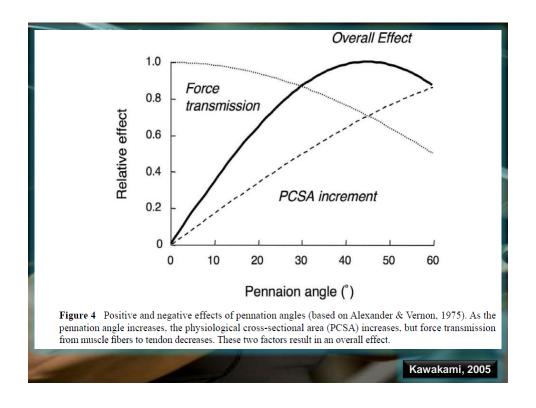
Pflugers Arch - Eur J Physiol (2008) 456:587–600 DOI 10.1007/s00424-007-0423-z

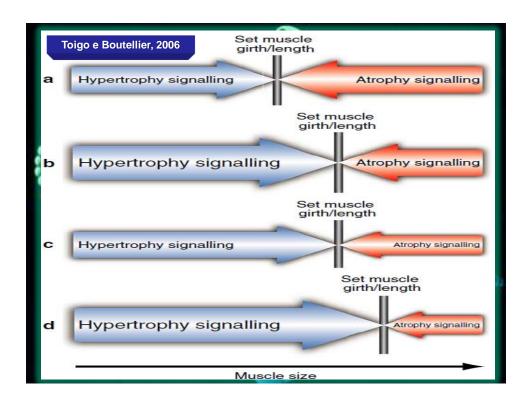

SKELETAL MUSCLE

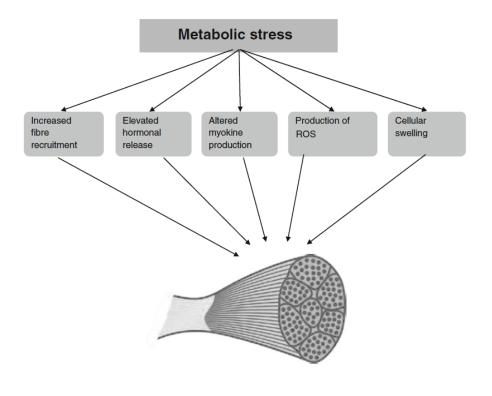

Cellular and molecular events controlling skeletal muscle mass in response to altered use

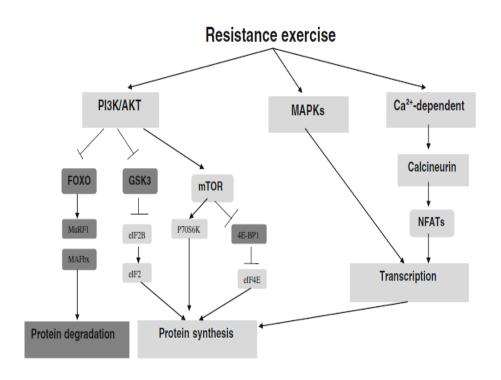

François B. Favier · Henri Benoit · Damien Freyssenet


Pflugers Arch - Eur J Physiol (2008) 456:587-600


Eventos moleculares e celulares que controlam a massa muscular







OPEN @ ACCESS Freely available online

PLOS ONE

Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy

Cameron J. Mitchell¹, Tyler A. Churchward-Venne¹, Leeann Bellamy¹, Gianni Parise¹, Steven K. Baker², Stuart M. Phillips¹

1 Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada, 2 Department of Neurology, School of Medicine, McMaster University, Hamilton, Ontario, Canada

October 2013 | Volume 8 | Issue 10 | e78636

RESPOSTA MUSCULAR E SISTÊMICA CORRELACIONADA A HIPERTROFIA INDUZIDA PELO TREINAMENTO DE FORÇA

METODOLOGIA

■ 23 sujeitos jovens destreinados em força a pelo menos um ano

□ 16 semanas de TF para o corpo todo, 4 x semana, 4 blocos de 4 semanas – 3 x 12 reps depois 3 x 10, 4 x 8 reps e 4 x 6 reps.

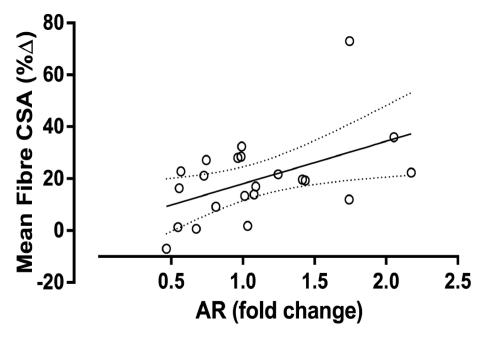


Figure 1. Correlation between the fold change in muscle AR protein content and changes in skeletal muscle fibre area following 16 weeks of resistance training. r = 0.60, P=0.003.

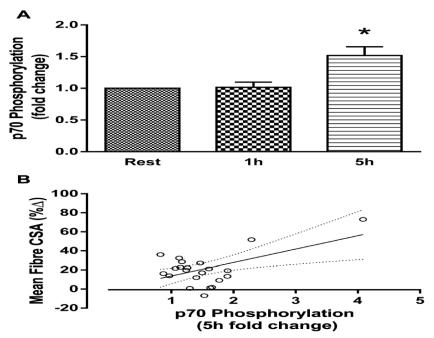


Figure 2. Phosphorylation of p70S6K following an acute bout of resistance exercise before 16 weeks of resistance training and the percentage change in skeletal muscle mean fibre area following the training * P < 0.05. A) Fold change in P70S6K phosphorylation. B) Correlation between 5h fold change in P70S6K phosphorylation and the percentage change in skeletal muscle mean fibre area following the training period. r = 0.54, P = 0.007. doi: 10.1371/gournal.pone.00763636.902

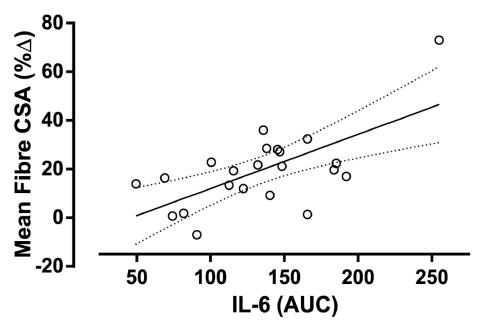
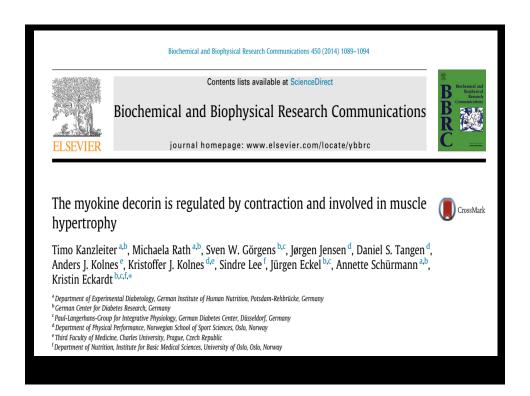



Figure 3. Correlation between the AUC of the acute IL-6 response to resistance exercise before 16 weeks of resistance training and the percentage change in skeletal muscle mean muscle fibre area following 16 weeks of resistance training. r=0.48, P = 0.019.

The Muscle Pump: Potential Mechanisms and Applications for Enhancing Hypertrophic Adaptations VOLUME 0 | NUMBER 0 | MONTH 2013

Brad J. Schoenfeld, MSc, CSCS, CSPS, NSCA-CPT¹ and Bret Contreras, MA²

¹Department of Health Sciences, Program of Exercise Science, City University of New York, Lehman College, New York, New York; and

²Department of Sport Performance, Auckland University of Technology, Auckland, New Zealand

Strength and Conditioning Journal | www.nsca-scj.com

Osmosensors Detect a Stretch on Cell Membrane Cell Perceives Threat Its Integrity Initiation of Anabolic and Anticatabolic Processes Muscle Protein Accretion Figure. Theoretical schematic for cellular swelling mechanisms of action on muscle hypertrophy.

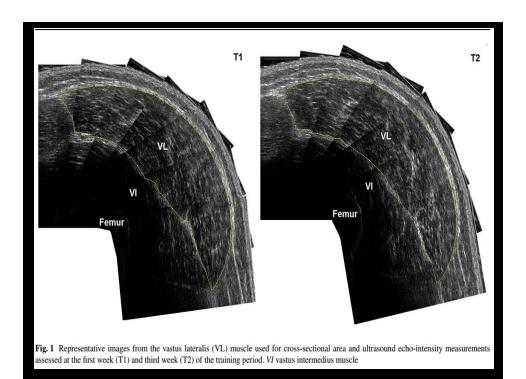
Eur J Appl Physiol DOI 10.1007/s00421-015-3243-4

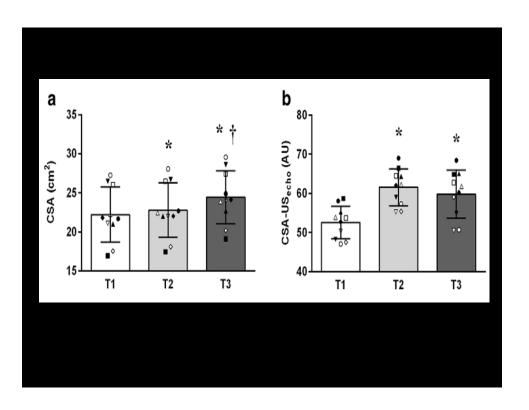
ORIGINAL ARTICLE

Published online: 18 August 2015

Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling

Felipe Damas¹ · Stuart M. Phillips² · Manoel E. Lixandrão¹ · Felipe C. Vechin¹ · Cleiton A. Libardi³ · Hamilton Roschel¹ · Valmor Tricoli¹ · Carlos Ugrinowitsch¹


O aumento inicial na área de secçãotransversal induzido pelo treinamento está associado com o inchaço muscular


10 homens jovens fisicamente ativos

Treinamento de 10 sem - 2 x sem:

3 x leg press 45º e 3 x extensão dos joelhos bilateral

9-12RM - 1 min e 30 s de intervalo

conditioning fundamentals

German Volume Training: An Alternative Method of High Volume-Load Training For Stimulating Muscle Growth

Daniel Baker, PhD, CSCS

nsca's performance training journal • www.nsca-lift.org • volume 8 issue 1

GVT complex #1 (Bench press emphasis)					
Exercise	Sets x Reps	Intensity			
1a. Bench press	10 x 10	Start at 60% 1RM Rest 20 – 30 s			
1b. Incline Dumbbell row	10 x 10	20RM Rest 20-30 s			
1c. Abdominal curl-up	10 x 10	Bodyweight, take 3-s for each rep Rest till 3-minute mark and repeat complex.			
GVT complex #2 (Pull-up emphasis)					
1a. Pull-up	10 x 10	Bodyweight Rest 20 – 30 s			
1b. Dumbbell press	10 x 10	20RM Rest 20 - 30 s			
1c. Reverse curl-up	10 x 10	Bodyweight, take 3-s for each rep Rest till 3-minute mark and repeat complex.			
GVT complex #3 (Squat emphasis)					
1a. Squat	10 x 10	Start at 60% 1RM SQ Rest 20 – 30 s			
1b. Leg curl	10 x 10	20RM			
No abdominals. Rest till 3-minute mark and repeat complex.					

FASCIAL STRETCH TRAINING - FST-7

Proposto por Hany Rambod, um dos melhores treinadores de fisiculturismo do mundo

Ao realizar 7 séries de 8-12 repetições c/ intervalo de 30-45 s a fáscia seria aumentada "inflada" e abriria mais espaço para a fibras musculares crescerem

SARCOPLASMA STIMULATING TRAINING (SST)

Proposto por Patrick Tuor, aplicado em Dennis Wolf

Carga de 8 repetições c/ intervalo de 10 s mesma carga até 1 repetição

Remove-se 20% da carga até chegar a 1 repetição e repete-se novamente

Pode-se chegar até 30 séries em 10 minutos, treinamento de no máximo 30 minutos

Maximizing Hypertrophy: Possible Contribution of Stretching in the Interset Rest Period

Nur Ikhwan Mohamad, MSc, ^{1,3} Kazunori Nosaka, PhD, ¹ and John Cronin, PhD^{1,2} ¹School of Exercise, Biomedical and Health Sciences Edith Cowan University, Perth, Western Australia; ²Sport Performance Research Institute New Zealand, AUT University, Auckland, New Zealand; and ³Faculty of Sports Science & Coaching, Perak, Malaysia

VOLUME 33 | NUMBER 1 | FEBRUARY 2011

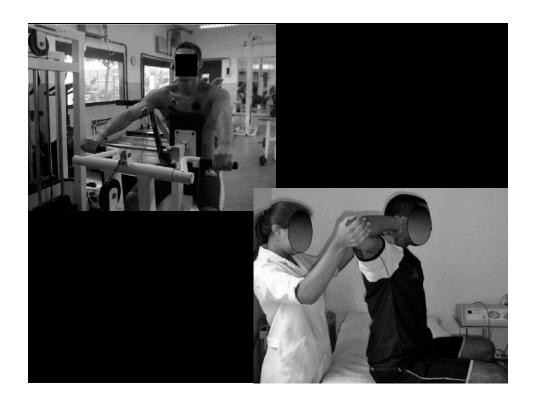
CrossMark Click for updates

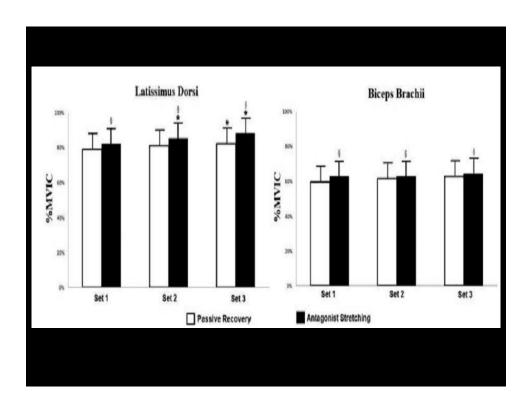
Research in Sports Medicine: An International Journal

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gspm20

Acute Effects of Antagonist Static Stretching in the Inter-Set Rest Period on Repetition Performance and Muscle Activation

Humberto Miranda^b, Marianna de Freitas Maia^a, Gabriel Andrade Paz^b & Pablo B Costa^c


- ^a Federal University of Rio de Janeiro, School of Physical Education and Sports, Rio de Janeiro, Brazil
- ^b Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- ^c California State University Fullerton, Exercise Physiology Laboratory, Department of Kinesiology, Fullerton, USA Published online: 29 Jan 2015.


To cite this article: Humberto Miranda, Marianna de Freitas Maia, Gabriel Andrade Paz & Pablo B Costa (2015) Acute Effects of Antagonist Static Stretching in the Inter-Set Rest Period on Repetition Performance and Muscle Activation, Research in Sports Medicine: An International Journal, 23:1, 37-50, DOI: 10.1080/15438627.2014.975812

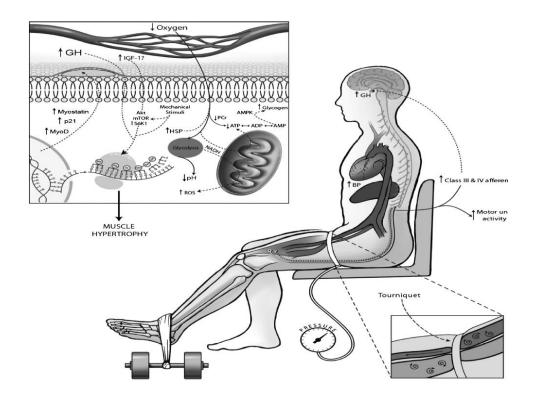
METODOLOGIA

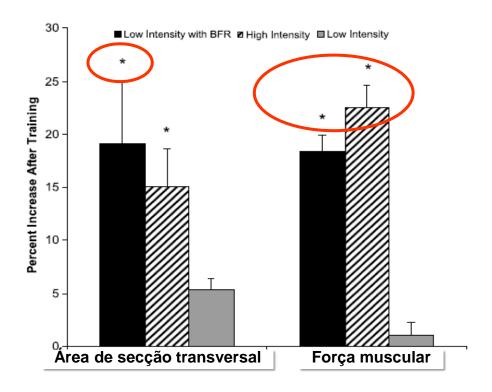
10 jovens treinados realizaram 40 s de alongamento passivo do peitoral maior no período de descanso entre as séries.

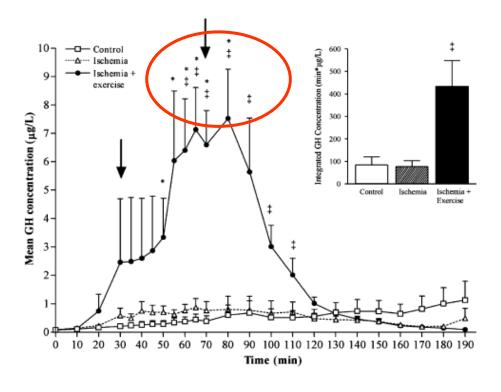
O exercício utilizado foi a remada sentada na máquina com a pegada aberta, sendo realizadas 3 séries até a falha na intensidade referente a 10RM.

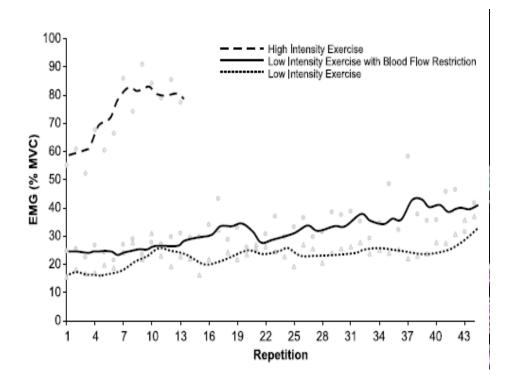
	Treinamento isométrico baixa intensidade	Treinamento isométrico alta intensidade	Treinamento isométrico de intensidade máxima	
Seleção do exercício	Mono/Multi articulares	Mono/Multi articulares	Mono/Multi articulares	
Nível de torque	30-50% da CIVM	70-80% da CIVM	100% da CIVM	
Repetições	1	1	10	
Séries	2-6 por exercício Progressão de 2 para 4-6 p/ grupo muscular	2-6 por exercício Progressão de 2 para 4-6 p/ grupo muscular	1-3 por exercício Progressão de 1 para 3 p/ grupo muscular	
Duração por repetição	40-60s, até a falha nas 1-2 séries finais	15-20s, até a falha nas 1-2 séries finais	3-5s	
Descanso entre as séries e repetições	30-60s	30-60s	25-30s, 60s	
Freqüência	3-4 sessões p/ grupo muscular/semana	3-4 sessões p/ grupo muscular/semana	3 sessões p/ grupo muscular/semana	
CIVM = contração isométrica voluntária máxima Wernborn et al., 2007				

Isométrico baixa intensidade: interessante para indivíduos que não toleram altas forças e c/ restrição de angulação de movimento devido a dor e/ou lesão

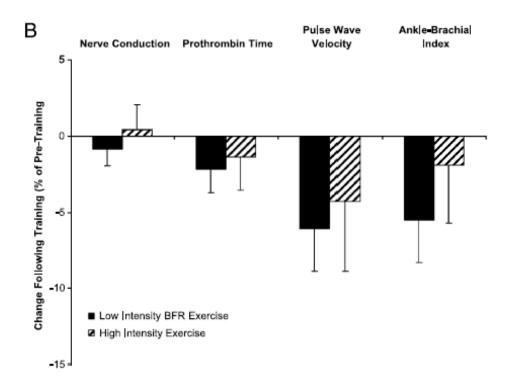

Isométrico alta intensidade: interessante para indivíduos que não toleram forças próximas do máximo


Isométrico de intensidade máxima: tomar cuidado com respiração excessivamente interrompida e elevação na pressão arterial


Wernborn et al., 2007




Blood Flow Restricted Exercise and Skeletal Muscle Health Todd M. Manini¹ and Brian C. Clark² ¹Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL; and ²Department of Biomedical Sciences, Institute for Neuromusculoskeletal Research, Ohio University, Athens, OH EXERCÍCIO COM OCLUSÃO DE FLUXO E SAÚDE DO MÚSCULO ESQUELÉTICO



Clin Physiol Funct Imaging (2013)

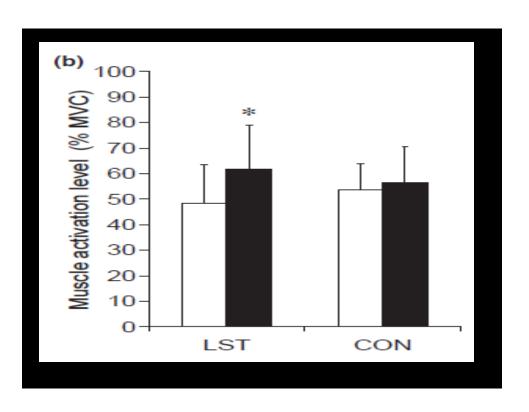
doi: 10.1111/cpf.12117

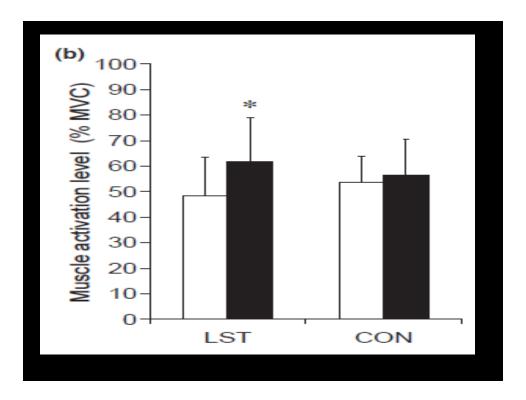
Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults

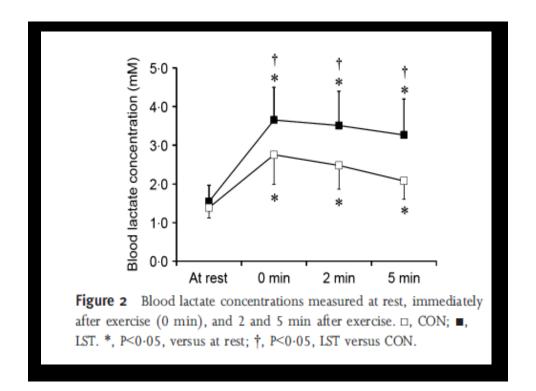
Yuya Watanabe¹, Haruhiko Madarame¹, Riki Ogasawara², Koichi Nakazato³ and Naokata Ishii¹

¹Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, ²Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, and ³Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan

Efeitos do treinamento de força de intensidade muito baixa com o movimento lento sobre o tamanho muscular e força em idosos saudáveis

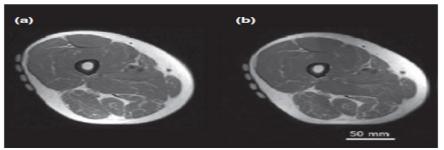

Table 1 Physical characteristics of the participants. LST (n = 9:7 men CON (n = 9:7 men)and 2 women) and 2 women) 69·9 ± 5·1 Age (years) 69·0 ± 4·7 159·8 ± 10·9 Height 158.4 ± 10.2 (cm) Body mass 60.8 ± 13.2 58.3 ± 13 (kg)

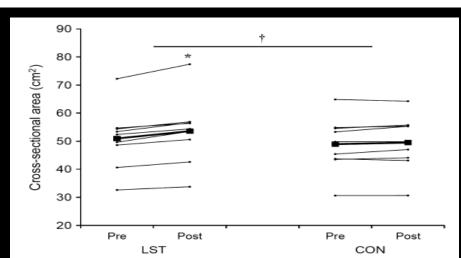

LST, low-intensity (30% 1RM) resistance training with slow movement and tonic force generation; CON, low-intensity (30% 1RM) resistance training with normal speed.


3 x 8 repetições a 30% de 1RM ajustado a cada 4 semanas - 2 x semana durante 12 semanas

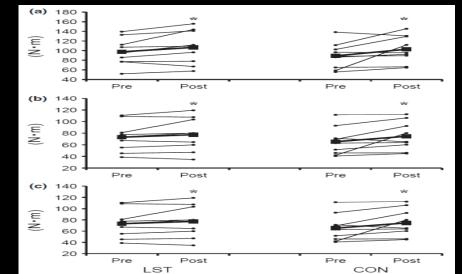
Lento 3 s conc. e 3 s exc. + 1 s isom.

Convencional 1 s cada




Table 2 Systolic blood pressure measured at rest and during exercise.

LST (n = 9) At rest	During exercise	CON (<i>n</i> = 9) At rest	During exercise
131·1 ± 13·5	171·9 ± 31·8*	128·4 ± 12·0	165·0 ± 17·1*


Blood pressures are expressed in millimetres of mercury. LST, low-intensity (30% 1RM) resistance training with slow movement and tonic force generation; CON, low-intensity (30% 1RM) resistance training with normal speed. *P<0.05 versus at rest.

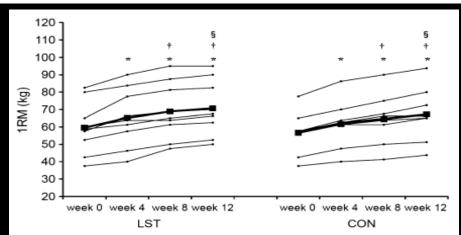

Figure 3 Typical magnetic resonance images showing transverse sections of the thigh taken before (a) and after (b) LST intervention for 12 weeks.

Figure 4 Cross-sectional area (CSA) of the quadriceps muscle measured before and after LST and CON interventions for 12 weeks. Each participant's value was presented by thin line, while mean value was presented by bold line. LST, low-intensity (30% 1RM) resistance training with slow movement and tonic force generation; CON, low-intensity (30% 1RM) resistance training with normal speed.*, P<0.05, versus preintervention. †, P<0.05, LST versus CON.

Figure 6 (a): Isometric strength measured before and after the intervention. (b): Isokinetic strength at 90° s⁻¹ measured before and after the intervention. (c): Isokinetic strength at 180° s⁻¹ measured before and after the intervention. Each participant's value was presented by thin line, while mean value was presented by bold line. IST, lowintensity (30% 1RM) resistance training with slow movement and tonic force generation; CON, low-intensity (30% 1RM) resistance training with normal speed. *, P<0.05 versuspreintervention.

Figure 5 One repetition maximum at 0, 4, 8 and 12 weeks of the intervention. Each participant's value was presented by thin line, while mean value was presented by bold line. IST, low-intensity (30% 1RM) resistance training with slow movement and tonic force generation; CON, low-intensity (30% 1RM) resistance training with normal speed. *, P<0.05 versus week 0; †, P<0.05 versus week 4; §, P<0.05 versus week 8.

J Physiol 590.2 (2012) pp 351–362 351

Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men

Nicholas A. Burd¹, Richard J. Andrews¹, Daniel W.D. West¹, Jonathan P. Little¹, Andrew J.R. Cochran¹, Amy J. Hector¹, Joshua G.A. Cashaback², Martin J. Gibala¹, James R. Potvin², Steven K. Baker³ and Stuart M. Phillips¹

¹Exercise Metabolism Research Group, ²Occupational Biomechanics Laboratory, Department of Kinesiology, and ³Michael G. DeGroote School of Medicine, Department of Neurology, McMaster University, Hamilton, Ontario, Canada

O tempo de tensão durante o treinamento de força estimula a síntese proteica de diferentes sub-frações em homens

8 sujeitos jovens treinados em força

Cadeira extensora unilateral

3 x até a falha com 30% de 1RM

Lento 6 s conc. e 6 s exc.

Convencional 1 s cada

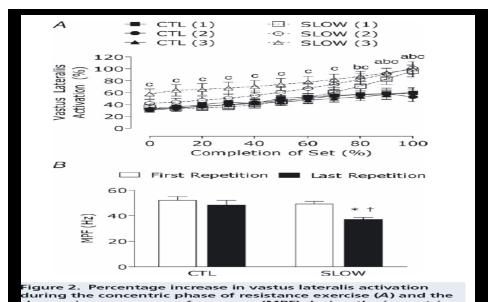
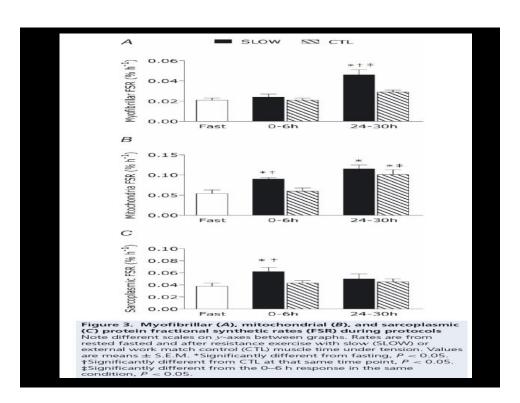



Figure 2. Percentage increase in vastus lateralis activation during the concentric phase of resistance exercise (A) and the change in mean power frequency (MPF) during the isometric phase of resistance exercise from the first repetition to the last repetition (B) Numbers in parentheses following SLOW indicate set number. Lower case letter indicates significantly different from CTL for sets 1–3: a, SLOW(1); b, SLOW(2); c, SLOW(3); P < 0.05. *Significantly different from CTL at that time point, P < 0.05.

THE EFFECTS OF COMBINING ELASTIC AND FREE WEIGHT RESISTANCE ON STRENGTH AND POWER IN ATHLETES

COREY E. ANDERSON, GARY A. SFORZO, AND JOHN A. SIGG Exercise and Sport Sciences, Ithaca College, Ithaca, New York

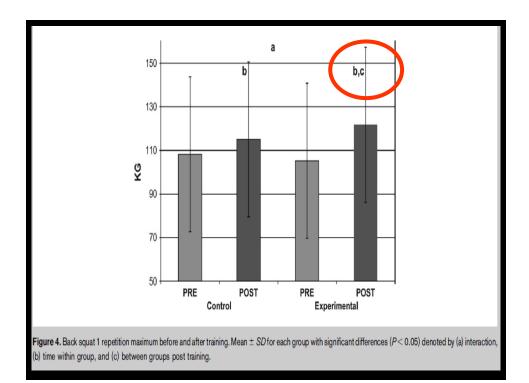
VOLUME 22 | NUMBER 2 | MARCH 2008 |

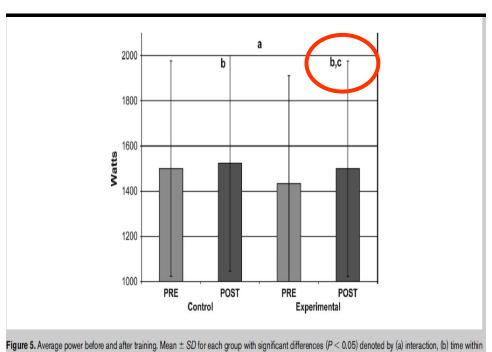
EFEITOS DO TREINAMENTO COMBINADO COM PESOS E ELÁSTICOS SOBRE A FORÇA E A POTÊNCIA EM ATLETAS

Figure 2. The back squat rack set up with elastic resistance in place. Carabineers are used to attach the elastic band to d-rings fixed to the rack at the bottom and the bar at the top.

Figure 1. The bench press set up with elastic resistance in place.

Carabineers are used to attach the elastic band to d-rings fixed to the rack at the bottom and the bar at the top.


Sujeitos treinados em força


Resistência elástica utilizada no supino e no agachamento (20% da carga reduzido)

Foram realizados exercícios básicos do corpo todo 3 x semana 3-6 x 2-10 reps ondulatório a 72-98% de 1RM 7 semanas

Figure 3. Bench press 1 repetition maximum before and after training. Mean \pm SD for each group with significant differences (P < 0.05) denoted by (a) interaction, (b) time within group, and (c) between groups post training.

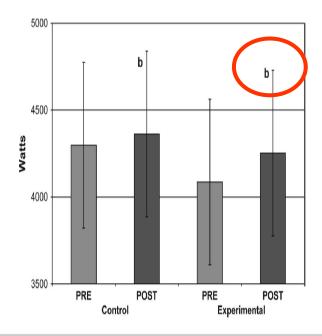


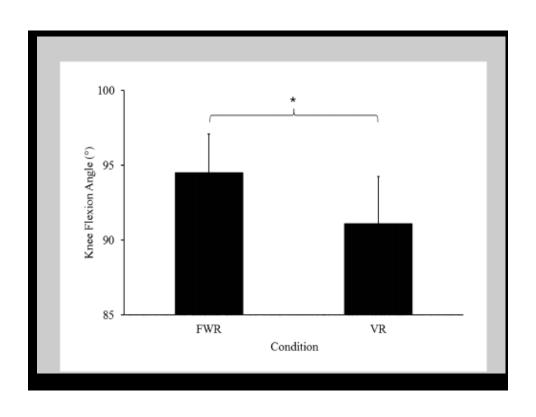
Figure 6. Peak power before and after training. Mean \pm SD for each group with significant differences (P < 0.05) denoted (b) time within group.

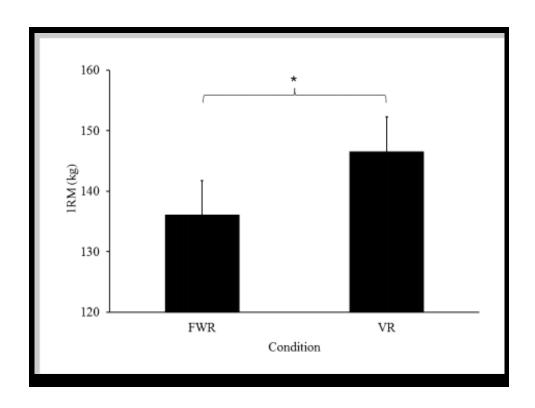
Influence of Variable Resistance Loading on Subsequent Free Weight Maximal Back Squat Performance

Minas A. Mina, Anthony J. Blazevich, Giannis Giakas, and Anthony D. Kay

¹School of Sport, Exercise and Human Performance, University of Derby, Buxton, United Kingdom; ²Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia; ³Department of Physical Education and Sport Science, University of Thessaly, Greece; and ⁴Sport, Exercise and Life Sciences, The University of Northampton, Northampton, United Kingdom

J Strength Cond Res 28(10): 2988-2995, 2014


Influência da resistência variável sobre a performance de força máxima no agachamento livre



Aquecimento com 3 reps a 85% de 1RM com e sem elástico (35% da carga)

5 min de descanso sentado e 1RM

Sujeitos agachavam a mais de 3 anos

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Journal of Science and Medicine in Sport 15 (2012) 153-158

Journal of Science and Medicine in Sport

www.elsevier.com/locate/jsams

Original research

Acute neuromuscular and fatigue responses to the rest-pause method Paul W.M. Marshall ^{a,*}, Daniel A. Robbins ^b, Anthony W. Wrightson ^a, Jason C. Siegler ^a

Resposta neuromuscular aguda e de fadiga ao método de repetições pausadas

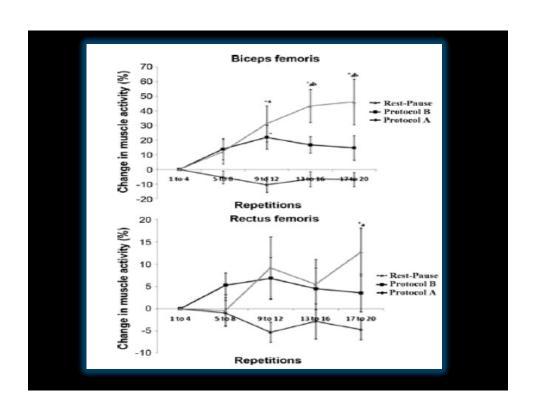
14 indivíduos jovens treinados em força - ~5 anos

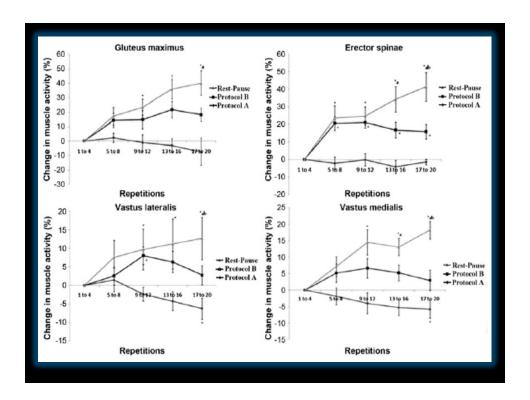
Sessões agudas:

- A) 20 reps 5 x 4 reps a 80% de 1RM c/ 3 min intervalo
- B) 20 reps 5 x 4 reps a 80% de 1RM c/ 20 s intervalo

Método repetição pausada reps até falha c/ 20 s intervalo

Table 1
Maximal isometric force output (N) and squat rate of force development (RFD) (N s ⁻¹) measured before (PRE), immediately post (IP), and 5-min post (5P)
each exercise protocol ($n = 14$). Data are mean \pm SE.

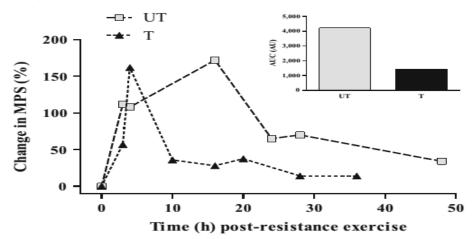

	Protocol A	Protocol B	Rest-pause method
Maximal isometric force	e output (N)		
PRE	1203.5 ± 99.8	1144.6 ± 84.6	1198 ± 75.2
IP	$1105.6 \pm 94.6^{\circ}$	$1054.4 \pm 89.9^{\circ}$	$1095.3 \pm 64.4^{\circ}$
5P	1219.9 ± 89.3	1146.6 ± 99.4	1169.1 ± 81.6
Maximal squat RFD (N	s^{-1})		
PRE	4204.3 ± 584.6	4517 ± 723.9	4562 ± 571.5
IP	$4057.2 \pm 504.4^*$	$3668.2 \pm 537.9^*$	$4038.2 \pm 676.3^{*}$
5P	4667.6 ± 583.8	4260.3 ± 793.9	4494.9 ± 723.5

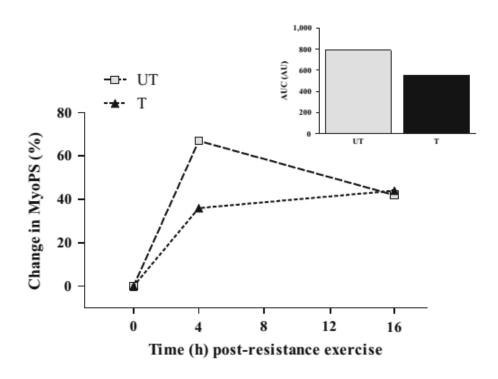

^{*} p < 0.05 as compared to PRE.

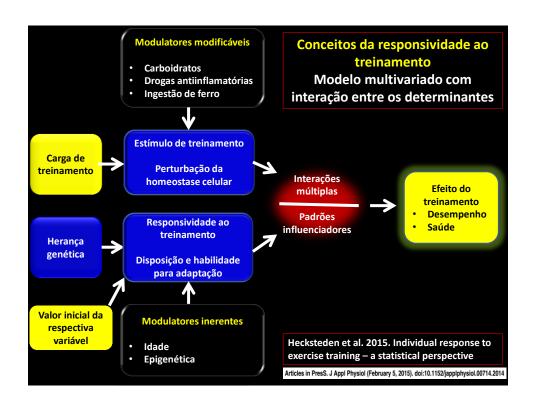
O método de repetições pausadas 🏤 EMG

Não foi mais fadigante versus sem falha

Pode ser eficiente para indivíduos treinados


Sports Med
DOI 10.1007/s40279-015-0320-0


REVIEW ARTICLE


Published online: 06 March 2015

A Review of Resistance Training-Induced Changes in Skeletal Muscle Protein Synthesis and Their Contribution to Hypertrophy

Felipe Damas \cdot Stuart Phillips \cdot Felipe Cassaro Vechin \cdot Carlos Ugrinowitsch

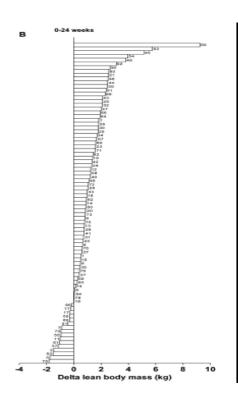
JAMDA

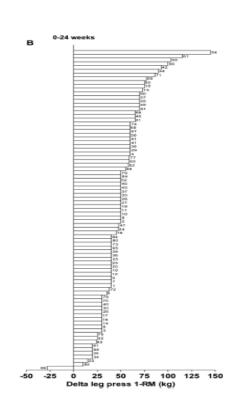
journal homepage: www.jamda.com

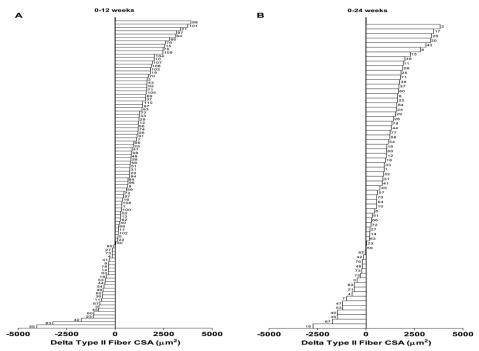
Original Study

There Are No Nonresponders to Resistance-Type Exercise Training in Older Men and Women

Tyler A. Churchward-Venne PhD ^{a,b}, Michael Tieland PhD ^{b,c}, Lex B. Verdijk PhD ^{a,b}, Marika Leenders MSC ^{a,b}, Marlou L. Dirks MSC ^a, Lisette C.P.G.M. de Groot PhD ^{b,c}, Luc J.C. van Loon PhD ^{a,b,*}


JAMDA xxx (2015) 1-12


Não há não-responsivos no treinamento de força em homens e mulheres idosas


Table 1 Participants' Characteri	Table 1 Participants' Characteristics					
Group	Age, y	Height, m	Body Weight, kg	Body Mass Index		
12-wk analysis						
All $(n = 110)$	72.6 ± 0.6	1.70 ± 0.01	78.1 ± 1.1	27.1 ± 0.4		
Men $(n = 66)$	72.6 ± 0.9	1.74 ± 0.01	82.9 ± 1.4	27.2 ± 0.4		
Women $(n = 44)$	72.6 ± 0.9	1.62 ± 0.01	71.0 ± 1.8	26.9 ± 0.7		
24-wk analysis						
All $(n = 85)$	72.8 ± 0.8	1.69 ± 0.01	77.7 ± 1.5	27.2 ± 0.4		
Men (n = 41)	73.0 ± 1.2	1.76 ± 0.01	84.8 ± 1.7	27.4 ± 0.5		
Women $(n = 44)$	72.6 ± 0.9	1.62 ± 0.01	71.0 ± 1.8	26.9 ± 0.7		
Data represent means :	Data represent means \pm SEM.					

TREINAMENTO

- **❖** 2-3 vezes por semana de 12-24 semanas
- ❖ 4 séries no leg press 45º e extensora
- ❖ 4 semanas: 60-75% 10-15 para 8-10 repetições e depois da semana 5: 8 repetições a 75-80% de 1RM – sempre reajustado.
- 1 min entre as séries e 3 min entre os exercícios

ig. 3. Histograms of the absolute changes in type II muscle fiber cross-ectional area (µm²) for each individual after 12 (A) and 24 (B) weeks of resistance-type exercise training in Iderly men and women. Numbers next to the bars represent the individual participants and match with the same participant aparticipants and match with the same participant and participants and participants and participants and participants are presented in Figures 1—6.

Journal of Strength and Conditioning Research, 2004, 18(4), 730–737 $^{\circ}$ 2004 National Strength & Conditioning Association

MUSCULAR ADAPTATIONS TO COMBINATIONS OF HIGH- AND LOW-INTENSITY RESISTANCE EXERCISES

Kazushige Goto,¹ Masanari Nagasawa,² Osamu Yanagisawa,³ Tomohiro Kizuka,¹ Naokata Ishii,⁴ and Kaoru Takamatsu¹

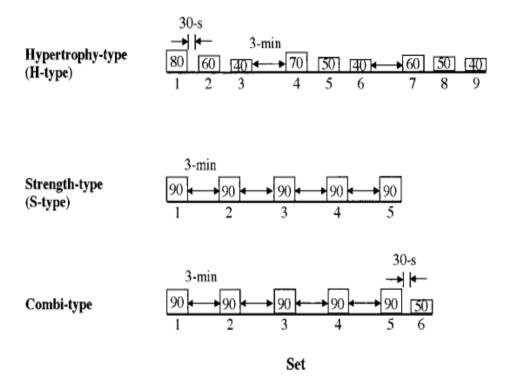
'Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; 'Shimizu Corporation, Minato, Tokyo, Japan; 'Japan Institute of Sports Sciences, Kita, Tokyo, Japan; 'Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo, Japan.

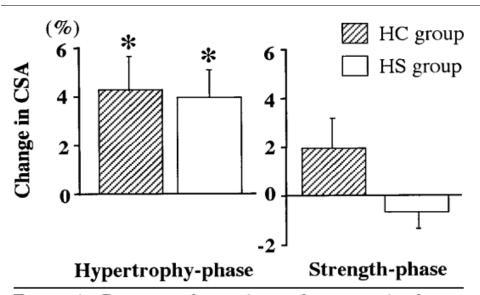
TABLE 1. Workout Phase	style in each group.* Hypertrophy phase (0–6 wk)	Strength phase (7–10 wk)
Regimen	Hypertrophy type (HC/HS groups)	Combi type (HC group) Strength type (HS group)
Exercise Frequency	Leg press/leg extension 2 d/wk	Leg press/leg extension 2 d/wk
* HC = hypertrophy	combi; HS = hypertrophy/strength.	

measurement

measurement

HC group
(Combi-type)


All subjects
(H-type)


HS group
(S-type)

0 wk 2 wk 6 wk 10 wk

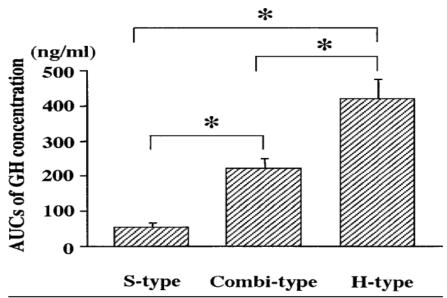
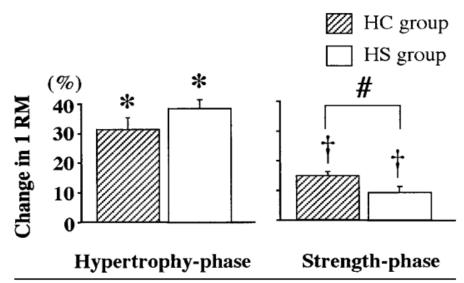

Hypertrophy-phase

FIGURE 1. Experimental design showing periodization of resistance training and timing of measurements.



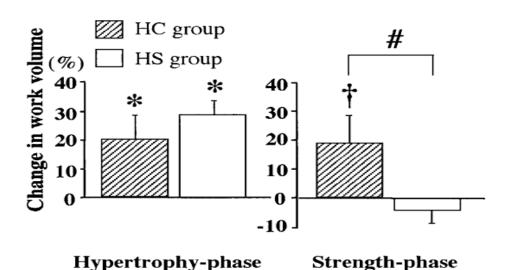
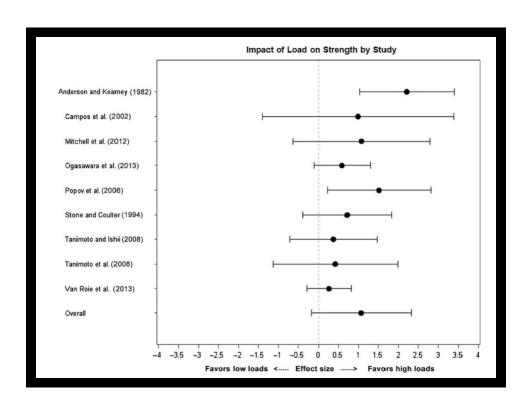

FIGURE 4. Percentage changes in muscle cross-sectional area (CSA) of the thigh after hypertrophy (0–6 weeks) and strength phases (7–10 weeks). Values are mean \pm *SEM*. * = significant change from pretraining value (p < 0.05).

FIGURE 3. Area under the curves (AUCs) in the time course of growth hormone (GH) concentration after 3 types of training regimen. Values are mean \pm *SEM*. * = significant difference between regimens (p < 0.05).

FIGURE 6. Percentage changes in one repetition maximum (1RM) of leg press after hypertrophy (0–6 weeks) and strength phases (7–10 weeks). Symbols denote significant differences (p < 0.05) from pretraining (*) and midtraining (†), and between groups (#). Values are mean \pm *SEM*.

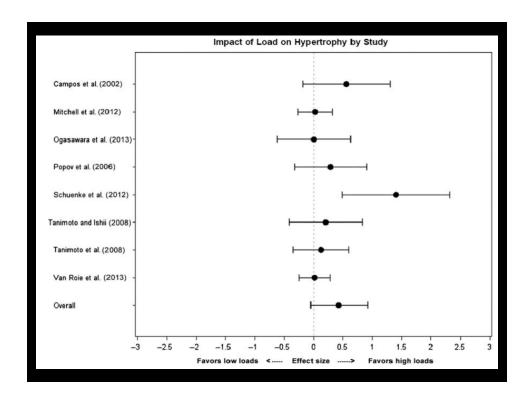
FIGURE 9. Percentage changes in work volume in knee extension exercise with the load corresponding to 30% of maximal isometric strength after hypertrophy (0–6 weeks) and strength phases (7–10 weeks). Symbols denote significant differences (p < 0.05) from pretraining (*) and midtraining (†), and between groups (#). Values are mean \pm *SEM*.

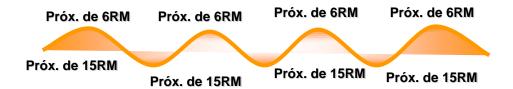

European Journal of Sport Science

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tejs20

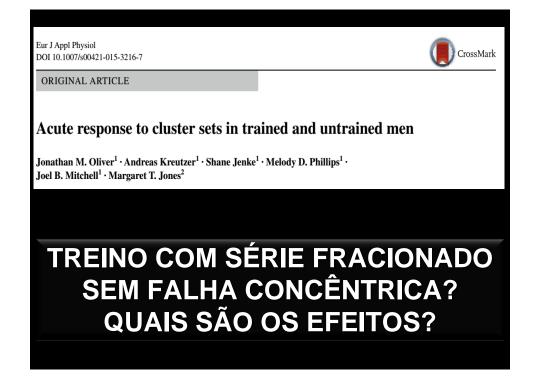
Muscular adaptations in low- versus high-load resistance training: A meta-analysis

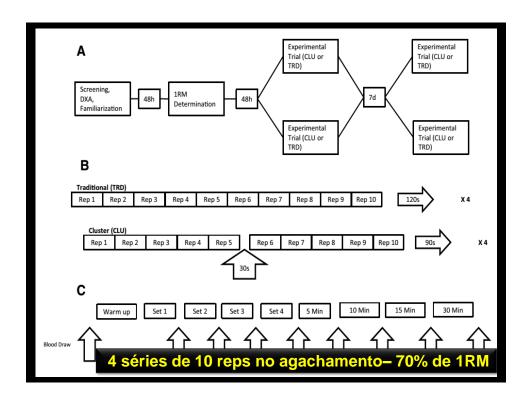
Brad J. Schoenfeld^a, Jacob M. Wilson^b, Ryan P. Lowery^b & James W. Krieger^c

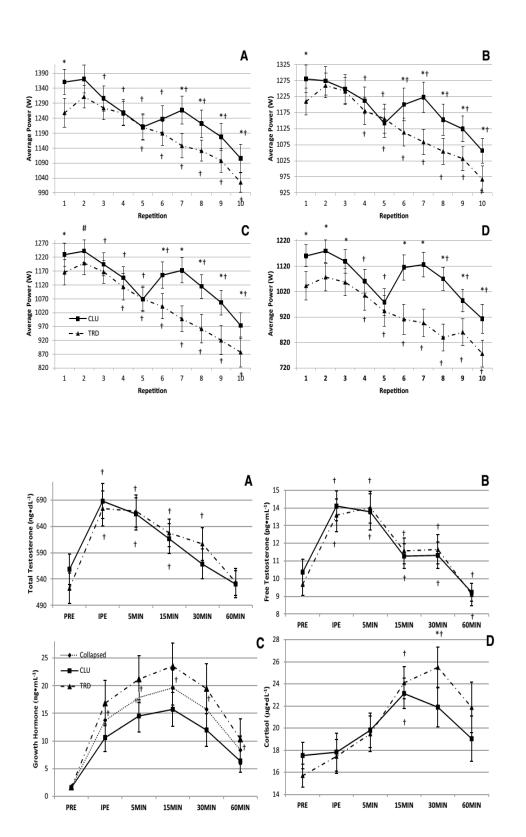

European Journal of Sport Science, 2014 http://dx.doi.org/10.1080/17461391.2014.989922


^a Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA

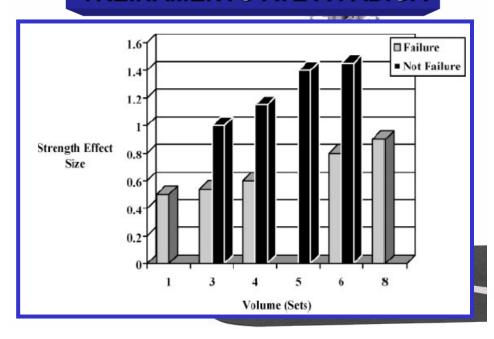
^b Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, IISA


^c Weightology LLC, Redmond, WA, USA Published online: 20 Dec 2014.





SÉRIE FRACIONADA SEM FALHA CONCÊNTRICA? RESTRIÇÃO ALIMENTAR NO FISICULTURISMO RECUPERAÇÃO HORMONAL PERIODIZAÇÃO

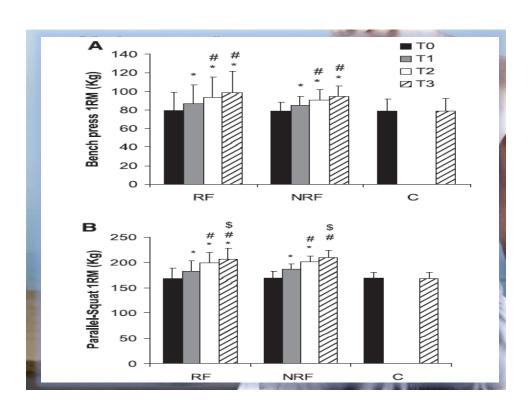


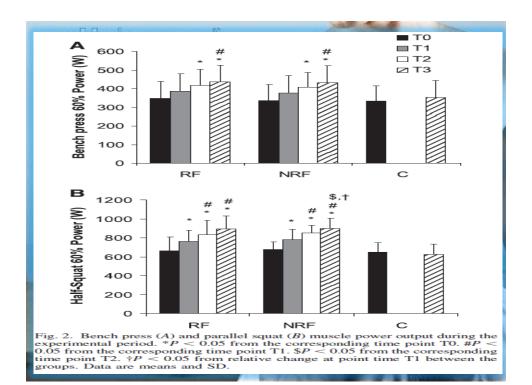
	Untrained $(n = 11)$	Resistance trained ($n = 12$)	Cohen's d
Age (years)	25 ± 1	25 ± 1	0.0
Height (cm)	179.9 ± 2.0	179.1 ± 2.2	0.1
Body mass (kg)	83.3 ± 3.5	84.6 ± 2.1	0.1
Body fat (%)	27.6 ± 2.2	$15.8 \pm 1.3*$	0.6
Lean mass (kg)	56.6 ± 1.6	67.7 ± 1.6 *	2.0
Bone mineral content (kg)	3.1 ± 0.4	$3.6 \pm 0.3*$	0.4
1RM back squat (kg)	86.8 ± 5.1	$146.9 \pm 4.9*$	3.5
1RM back squat:body mass	1.07 ± 0.08	$1.75 \pm 0.07*$	3.0

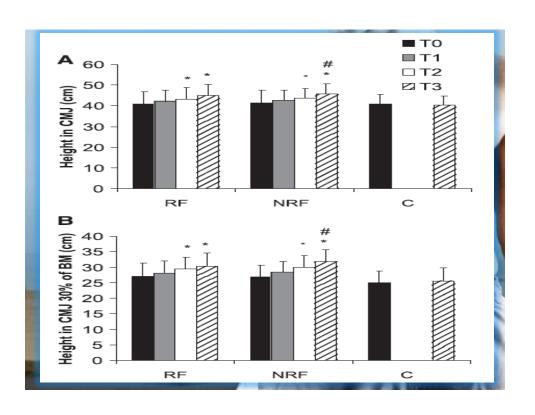
TREINAMENTO ATÉ A FADIGA

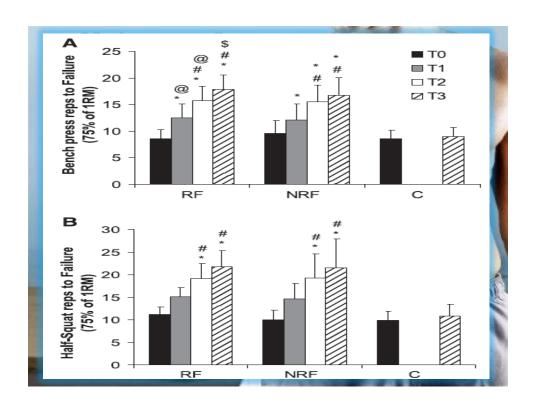
Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains

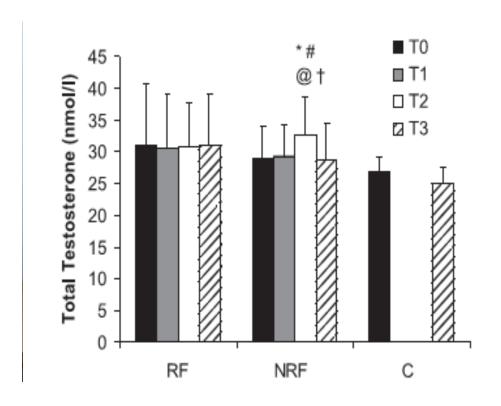
Mikel Izquierdo,¹ Javier Ibañez,¹ Juan José González-Badillo,² Keijo Häkkinen,³ Nicholas A. Ratamess,⁴ William J. Kraemer,⁵ Duncan N. French,⁶ Jesus Eslava,¹ Aritz Altadill,¹ Xabier Asiain,¹ and Esteban M. Gorostiaga¹

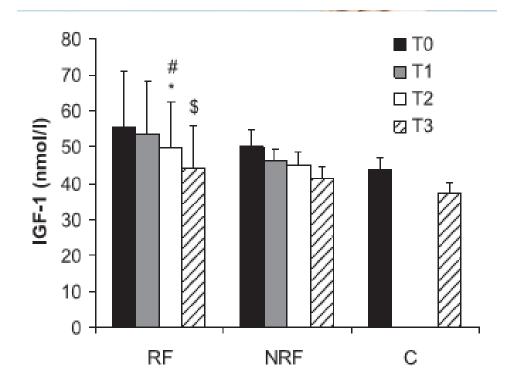

¹Studies, Research and Sport Medicine Center, Government of Navarra and ²Olympic Center of Sport Studies, Spanish Olympic Committee, Madrid, Spain; ³Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland, ⁴Department of Health and Exercise Science, The College of New Jersey, Ewing, New Jersey; ⁵Department of Kinesiology, Human Performance Laboratory, University of Connecticut, Storrs, Connecticut; and ⁶Institute of Sport, Northumbria University, Newcastle, United Kingdom


J Appl Physiol 100: 1647-1656, 2006.


DIFERENTES EFEITOS DO TF ATÉ A FALHA VERSUS SEM FALHA SOBRE AS RESPOSTAS HORMONAIS, FORÇA E POTÊNCIA


TREINAMENTO


- **♦ 2 vezes por semana de 16 semanas**
- ❖ Grupo falha: 3 x 10RM no supino e 80% de 10RM no agachamento, depois 6RM, nas últimas semanas os dois grupos 2-4 reps 85-90% de 1RM.
- Grupo sem falha: 6 séries de 5 repetições com carga similar e 6 séries de 3 repetições
- 2 min entre as séries e os exercícios



Eur J Appl Physiol (2013) 113:2133–2142 DOI 10.1007/s00421-013-2642-7

ORIGINAL ARTICLE

Effect of range of motion in heavy load squatting on muscle and tendon adaptations

K. Bloomquist · H. Langberg · S. Karlsen ·

S. Madsgaard · M. Boesen · T. Raastad

EFEITO DA AMPLITUDE DE MOVIMENTO NO AGACHAMENTO PESADO SOBRE AS ADAPTAÇÕES MUSCULARES E TENDÍNEAS

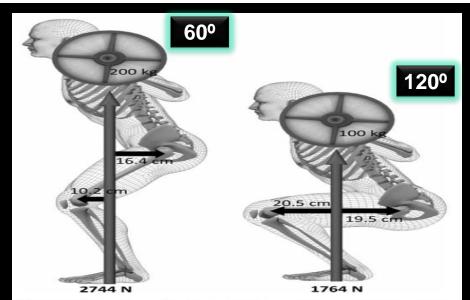


Fig. 1 Illustration of the deepest position in the SS (*left*) and DS exercise (*right*). The external moment arms indicated are estimated from an average subject with regard to lifting technique and height (180 cm). The ground reaction forces represent a body mass of 80 kg and an external load of 200 kg in the SS, and 100 kg in the DS

Table 1 Pretest	characteristics of	subjects	in the SS	group and in th	e
DS group (mean	\pm SD)				

	Shallow squat group $(n = 9)$	Deep squat group $(n = 8)$
Age (years)	23 ± 3	25 ± 6
Weight (kg)	80 ± 15	79 ± 6
Height (cm)	178 ± 6	181 ± 5
Peak torque (Nm) (isometric at 105°)	241 ± 66	242 ± 29
Jump height (cm) (squat jump)	33.9 ± 3.6	32.8 ± 3.3
Muscle CSA (cm ²) (front thigh)	95.6 ± 14.1	95.2 ± 7.3
Tendon CSA (mm²) (middle part)	162 ± 9	166 ± 12

Table 2 Periodization and progression of strength training					
Week	Monday	Wednesday	Friday		
1	Familiarization	Familiarization	Familiarization		
2	Pretesting	Pretesting	Pretesting		
3	$3 \times 10 \text{ RM}$	$3 \times 8 \text{ (submax)}^a$	$4 \times 5 \text{ RM}$		
4	$3 \times 10 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$4 \times 5 \text{ RM}$		
5	$3 \times 10 \text{ RM}$	3×8 (submax)	$4 \times 5 \text{ RM}$		
6	$3 \times 10 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$4 \times 5 \text{ RM}$		
7	$3 \times 10 \text{ RM}$	3×8 (submax)	$4 \times 5 \text{ RM}$		
8	$3 \times 10 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$4 \times 5 \text{ RM}$		
9	$3 \times 6 \text{ RM}$	3×8 (submax)	$5 \times 3 \text{ RM}$		
10	$3 \times 6 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$5 \times 3 \text{ RM}$		
11	$3 \times 6 \text{ RM}$	3×8 (submax)	$5 \times 3 \text{ RM}$		
12	$3 \times 6 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$5 \times 3 \text{ RM}$		
13	$3 \times 6 \text{ RM}$	3×8 (submax)	$5 \times 3 \text{ RM}$		
14	$3 \times 6 \text{ RM}$	$3 \times 10 \text{ (submax)}$	$5 \times 3 \text{ RM}$		
15	Posttesting	Posttesting	Posttesting		
a Eight re	^a Eight reps with a 12–13 RM load				

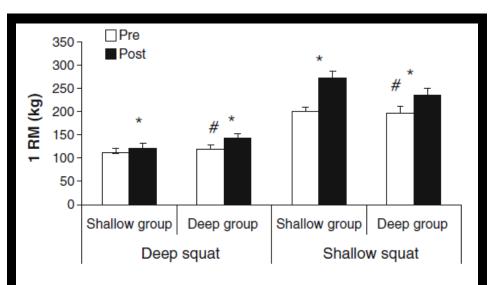


Fig. 2 One repetition maximum (1 RM) in the DS and SS exercise measured pre and post intervention. *Asterisk* significant change from pretest, *hash* significant difference between groups from pre to posttest

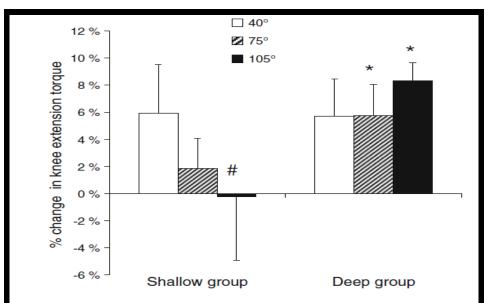
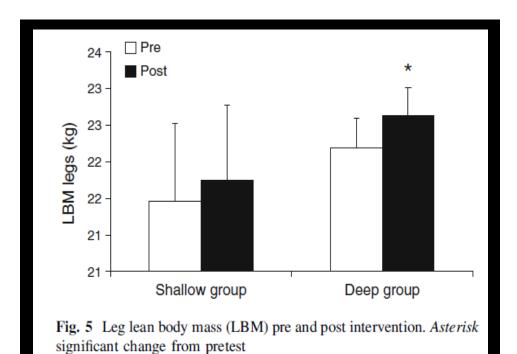
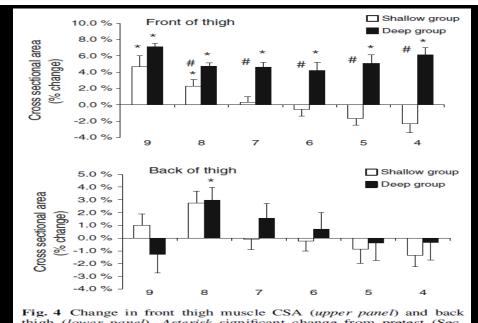



Fig. 3 Change in isometric knee-extension peak torque measured at knee angles of 40° , 75° and 105° (0° is full extension). Asterisk significant change from pretest, hash significant difference between groups from pre to posttest



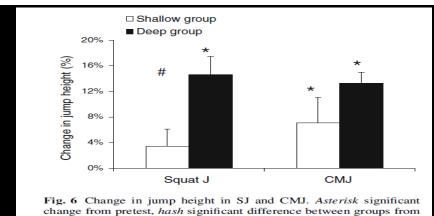

Fig. 4 Change in front thigh muscle CSA (*upper panel*) and back thigh (*lower panel*). *Asterisk* significant change from pretest (Section 9 was the most proximal), *hash* significant difference between groups from pre to posttest

Table 3 Muscle architecture before and after training in the SS and DS group					
	Shallow squat group Pre	Post	Deep squat group Pre	Post	
Muscle thickness (cm) Fasicle angle (°)	2.47 ± 0.37 18.5 ± 3.0	2.54 ± 0.33 $22.6 \pm 3.7*$	2.51 ± 0.26 18.6 ± 2.8	2.60 ± 0.32 $21.7 \pm 2.0*$	

Pre and post values given as mean \pm SD

pre to posttest

* P < 0.05

Eur J Appl Physiol (2013) 113:2691–2703 DOI 10.1007/s00421-013-2700-1

ORIGINAL ARTICLE

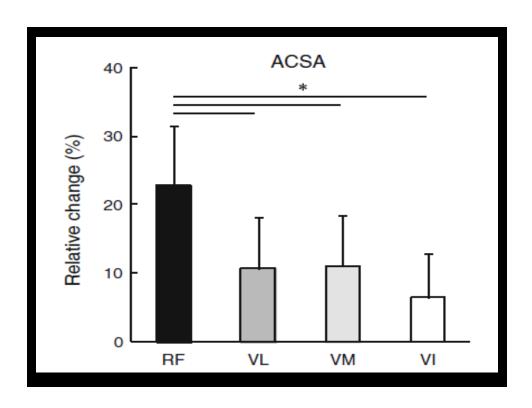
Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training

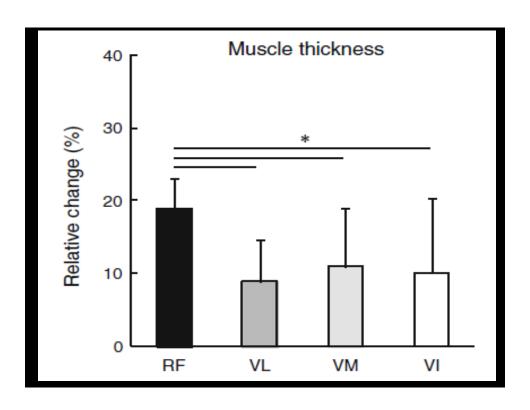
Ryoichi Ema · Taku Wakahara · Naokazu Miyamoto · Hiroaki Kanehisa · Yasuo Kawakami

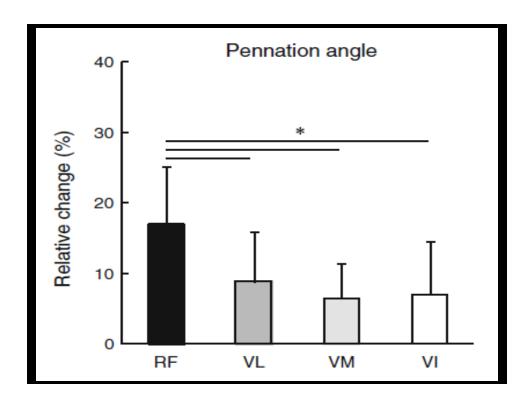
Mudanças não homogêneas na arquitetura do quadríceps induzidas pela treinamento de força

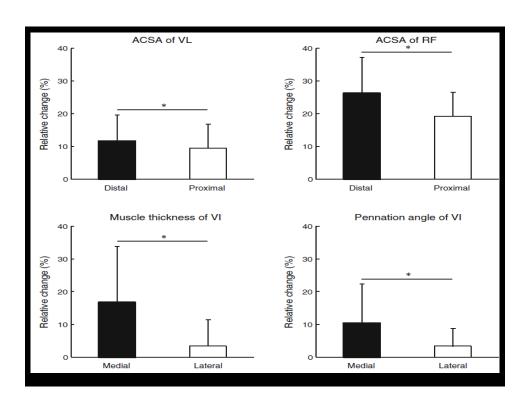
11 Jovens fisicamente ativos
10 controles

TREINAMENTO DE 3 MESES:


Extensão dos joelhos (2 s conc. e 2 s na exc.)


3 x semana


5 x 8 reps a 80% de 1RM


1,5 min intervalo entre as séries

1RM ajustada a cada 2 semanas

Eur J Appl Physiol (2012) 112:1569–1576 DOI 10.1007/s00421-011-2121-y

ORIGINAL ARTICLE

Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training

Taku Wakahara · Naokazu Miyamoto · Norihide Sugisaki · Koichiro Murata · Hiroaki Kanehisa · Yasuo Kawakami · Tetsuo Fukunaga · Toshimasa Yanai

Associação entre diferenças na ativação muscular regional em uma sessão de TF e a hipertrofia após o treinamento

12 Jovens fisicamente ativos

TREINAMENTO DE 3 MESES:

Extensão dos cotovelos com halteres

3 x semana

5 x 8 reps a 80% de 1RM

1,5 min intervalo entre as séries

1RM ajustada a cada 2 semanas

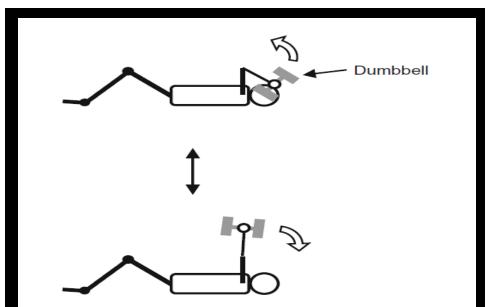
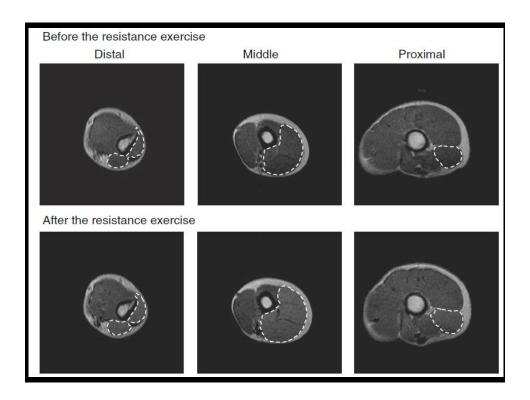
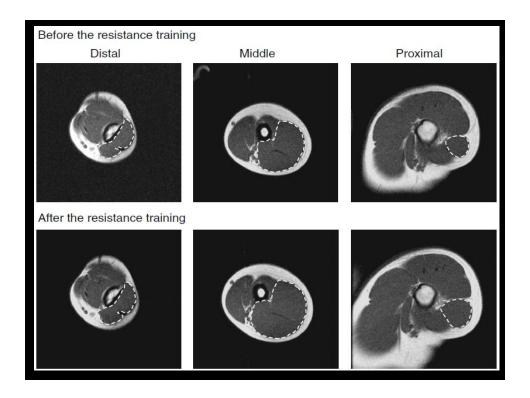
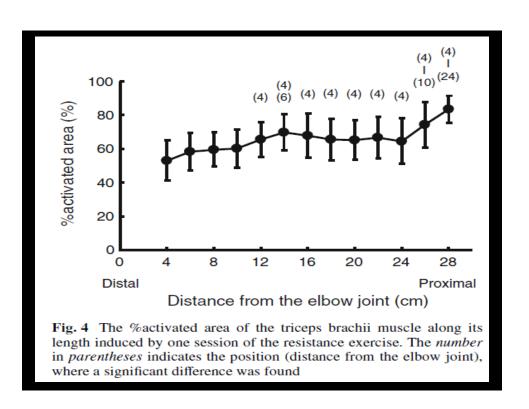
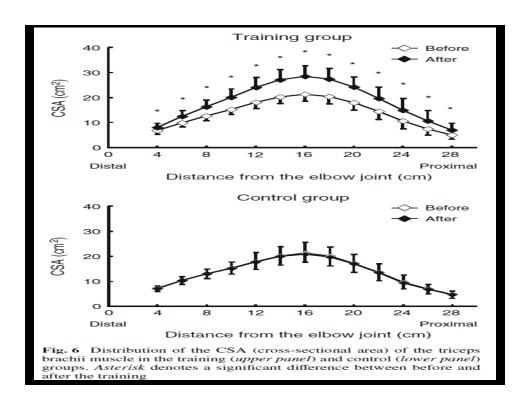
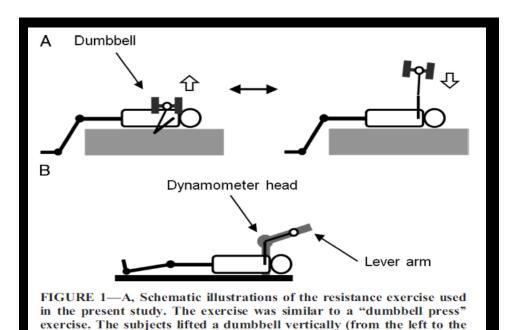






Fig. 1 Schematic illustrations of the "lying triceps extension" exercise. The subjects concentrically extend, and then eccentrically flexed the elbow with a dumbbell in the hand

Nonuniform Muscle Hypertrophy: Its Relation to Muscle Activation in Training Session

TAKU WAKAHARA^{1,2}, ATSUKI FUKUTANI^{3,4,5}, YASUO KAWAKAMI¹, and TOSHIMASA YANAI¹

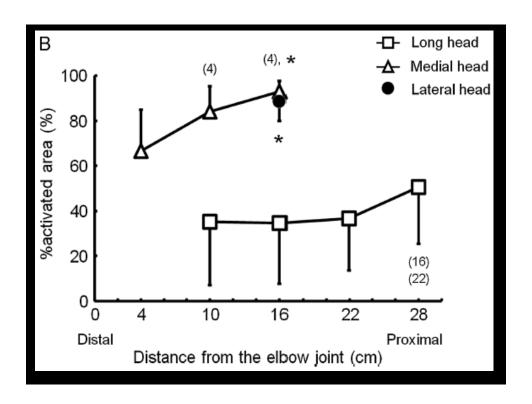
¹Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, JAPAN; ²Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, JAPAN; ³Graduate School of Sport Sciences, Waseda University, Saitama, JAPAN; ⁴Faculty of Sport and Health Science, Ritsumeikan University, Shiga, JAPAN; and ⁵Japan Society for the Promotion of Science, Tokyo, JAPAN


Med. Sci. Sports Exerc., Vol. 45, No. 11, pp. 2158-2165, 2013.

Hipertrofia muscular não uniforme: Relação com a ativação muscular na sessão de treino

12 Jovens fisicamente ativos


TREINAMENTO DE 3 MESES:


3 x semana
5 x 8 reps a 80% de 1RM
1,5 min intervalo entre as séries
1RM ajustada a cada 2 semanas

right illustration), and then lowered it (from the right to the left illus-

tration). B, A schematic illustration of strength testing.

Eur J Appl Physiol DOI 10.1007/s00421-012-2511-9

ORIGINAL ARTICLE

Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training

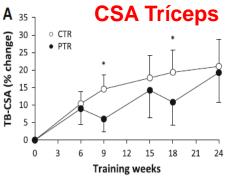
Riki Ogasawara · Tomohiro Yasuda · Naokata Ishii · Takashi Abe

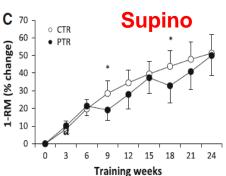
Eur J Appl Physiol. 2013 Apr;113(4):975-85.

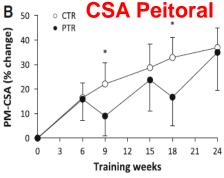
Comparação da hipertrofia muscular após 6 meses de TF contínuo versus periódico

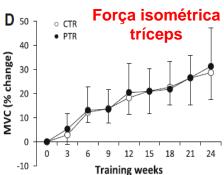
14 HOMENS JOVENS DESTREINADOS

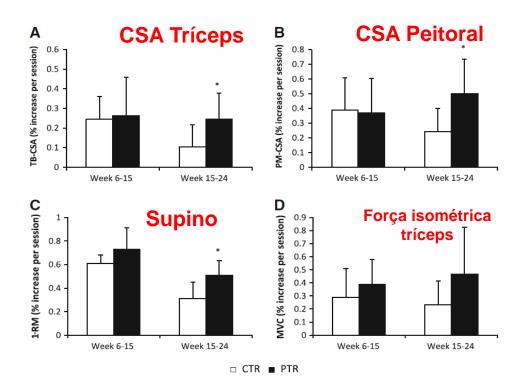
TREINAMENTO DE FORÇA


3 x semana supino


3 x 10 reps a 75% de 1RM (reaferida a cada 3 semanas) c/ 2-3 minutos de intervalo


Contínuo: 24 semanas

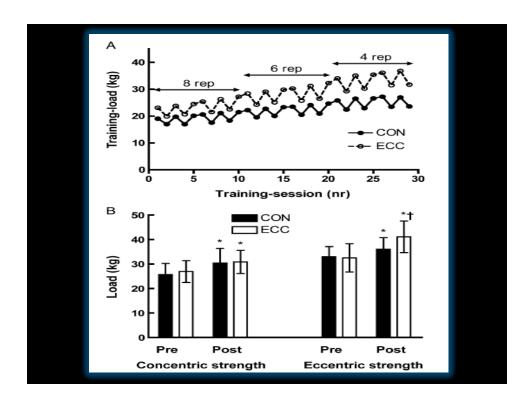

Periódico: 6 semanas treino + dois ciclos de


3 semanas de destreino / 6 retreino

Muscular Performance after Concentric and Eccentric Exercise in Trained Men

HARALD VIKNE $^{1,2},$ PER E. REFSNES 3, MERETE EKMARK 2, JON INGULF MEDBØ 4, VIDAR GUNDERSEN 5, and KRISTIAN GUNDERSEN 2

¹Norwegian School of Sport Sciences, Oslo, NORWAY; ²Department of Molecular Biosciences, University of Oslo, NORWAY; ³Norwegian Olympic Sports Centre, Oslo, NORWAY; ⁴National Institute of Occupational Health, Oslo, NORWAY; and ⁵Department of Anatomy and the CMBN, University of Oslo, NORWAY


Med. Sci. Sports Exerc., Vol. 38, No. 10, pp. 1770-1781, 2006.

Desempenho muscular após treinamento concêntrico e excêntrico em homens treinados

TABLE 2. The training program for the concentric exercise and eccentric exercise groups.

	Trainin	_		
Week	1	2	3	Reps per week
1	3 × 8RM	3 × 8 medium	3 × 8RM	72
2	3 × 8 medium	$4 \times 8RM$		56
3	4 × 8RM	3 × 8 medium	$4 \times 8RM$	88
4	3 × 8 medium	$4 \times 8RM$		56
5	$4 \times 6RM$	3 × 6 medium	$4 \times 6RM$	66
6	3 × 6 medium	$4 \times 6RM$		42
7	$4 \times 6RM$	4 × 6 medium	$4 \times 6RM$	72
8	4 × 6 medium	$4 \times 6RM$		48
9	$5 \times 4RM$	4 × 4 medium	$5 \times 4RM$	56
10	4 × 4 medium	$5 \times 4RM$		36
11	$5 \times 4RM$	4 × 4 medium	$5 \times 4RM$	56
12	4 × 4 medium	$5 \times 4RM$		36

The training within each session is given as the number of sets times the number of repetitions in each set. The designated intensity of each training session is termed RM (maximum load) or medium (10–15% lower than maximum).

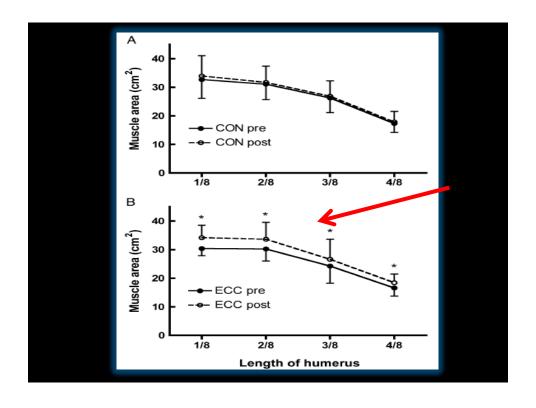


TABLE 4. Single-fiber cross-sectional area, weighted mean cross-sectional area, and relative cross-sectional fiber area in CON and ECC before and after the training period,

	CON (N = 7)			ECC (N = 6)			
	Pre	Post	Δ (%)	Pre	Post	Δ (%)	
Fiber area (µm²)							
Type I	5942 ± 1628	5821 ± 1304	-2 ± 9	5320 ± 1227	6635 ± 1361*	25 ± 11†	
Type IIA	9615 ± 3004‡	10,087 ± 3059‡	5 ± 15	9459 ± 1387‡	13,213 ± 1899‡*	40 ± 18†	
Weighted mean	8408 ± 2670	8715 ± 2654	4 ± 15	7394 ± 1223	10,453 ± 1910*	41 ± 20†	
IIA/I-area	1.6 ± 0.2	1.7 ± 0.3	7 ± 15	1.8 ± 0.3	2 ± 0.3*	12 ± 7	
Relative fiber area/%							
Type I	24.7 ± 8.3	24.1 ± 10.7	-0.6 ± 13.2	36.1 ± 5.5†	27 ± 5.1*	-9.1 ± 8.4	
Type II	75.3 ± 8.3	75.9 ± 10.7	0.6 ± 13.2	63.9 ± 5.5†	73 ± 5.1*	9.1 ± 8.4	

Values are means ± SD. CON, concentric exercise group; ECC, eccentric exercise group.

Maior hipertrofia e ganho de força excêntrica

Ganho similar de força concêntrica e velocidade angular BOA ESTRATÉGIA PARA INDIVÍDUOS TREINADOS

ACTA PHYSIOLOGICA

Acta Physiol 2014, 210, 642-654

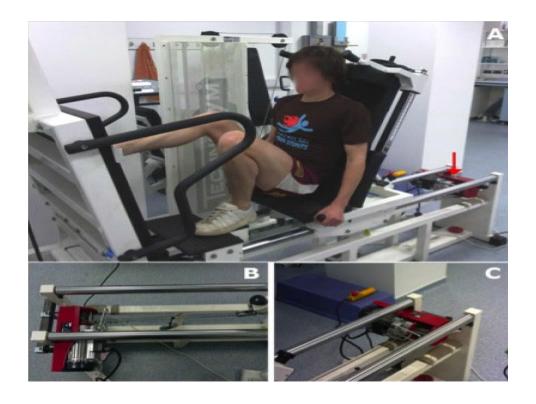
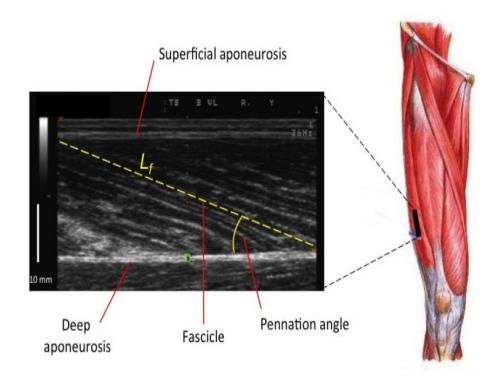
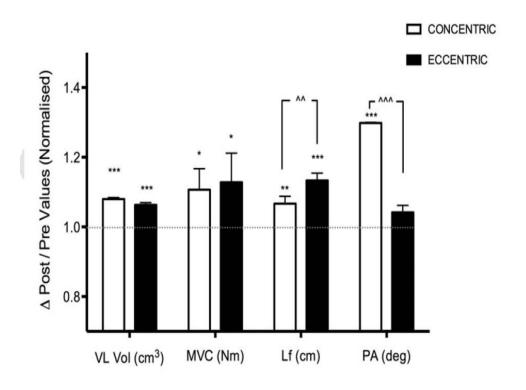
Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle

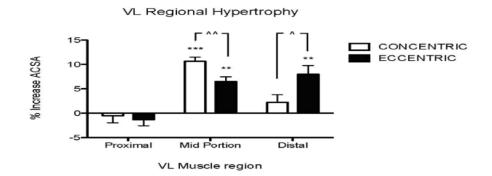
M. V. Franchi,^{1,2} P. J. Atherton,¹ N. D. Reeves,² M. Flück,³ J. Williams,¹ W. K. Mitchell,¹ A. Selby,¹ R. M. Beltran Valls¹ and M. V. Narici¹

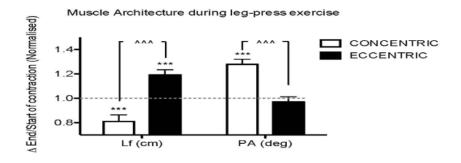
- 1 School of Graduate Entry Medicine and Health, MRC-ARUK Centre of Excellence for Musculaskeletal Ageing Research, University of Natingham, Derby, UK
- 2 School of Healthcare Science, Institute for Biomedical Research into Human Movement, and Health, Manchester Metropolitan University, Manchester, UK
- 3 Department of Orthopaedics, University of Zurich, Balgrist University Hospital, Zurich, Switzerland

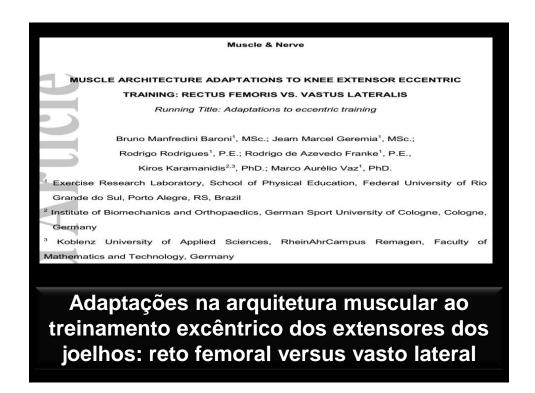
Respostas estruturais, funcionais e moleculares ao TF concêntrico e excêntrico no músculo humano

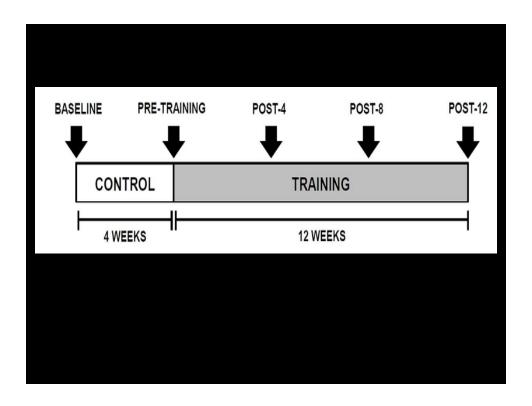
^{*} Significantly different from pre values (P < 0.05); † significantly different from CON (P < 0.01); ‡ significantly larger than type I fibers (P < 0.001).


Table 1. Maximum lifting or lowering ability changes for the CON Group (CON) and the ECC one (ECC). EMG values were recorded only at baseline during 1RM leg-press for concentric and eccentric phases. Load ratio is also showed and calculated as the ratio of pre and post ECC/CON training loads.


CON 1RM (Kg)			ECC 1RM (K	Load ratio				
	Pre	Post	Δ%	Pre	Post	Δ%	Pre	Post
	192 ± 16	262 ± 30	36*	233 ± 13	337 ± 9	44*	1.21	1.29
	EMG (mV)			EMG (mV)				
	0.33± 0.1			0.31± 0.1				


(Pre = baseline, Post = Post-training) values are means \pm SEM (*P<0.05, pre-to-post difference).



Mesocycle	Week	Frequency	Sets	Repetitions	Volume
	1	1	3	10	30
	2	2	3	10	30
	3	2	3	10	30
	4	2	3	10	30
4	5	1	4	10	40
,	6	2	4	10	40
2	7	2	4	10	40
	8	2	4	10	40
	9	1	5	10	50
	10	2	5	10	50
3	11	2	5	10	50
	12	2	5	10	50

Table 2. Muscle thickness (MT), pennation angle (PA) and fascicle length (FL) from rectus
femoris (RF) and vastus lateralis (VL) at the different evaluation times of the study.

2 40 10 22 *
2.19±0.33 *
8.67±1.35
5.61±1.51 * [#]
2.77±0.29 *
17.15±2.58
9.67±1.75 * [#]

^{*} different from baseline and pre-training (P<0.05); # different from post-4 (P<0.05).

Comparison of Concentric and Eccentric Bench Press Repetitions to Failure

STEPHEN B. KELLY, LEE E. BROWN, STEVEN P. HOOKER, PAMELA D. SWAN, MATTHEW P. BUMAN, BRENT A. ALVAR, AND LAURIE E. BLACK

¹Department of Kinesiology, Vanguard University, Costa Mesa, California; ²Center for Sport Performance, California State University, Fullerton, California; ³School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona; ⁴Rocky Mountain University of Health Professions, Provo, Utah; and ⁵College of Allied Health, California Baptist University, Riverside, California

J Strength Cond Res 29(4): 1027-1032, 2015

Comparação das repetições realizadas até falha no supino concêntrico e excêntrico

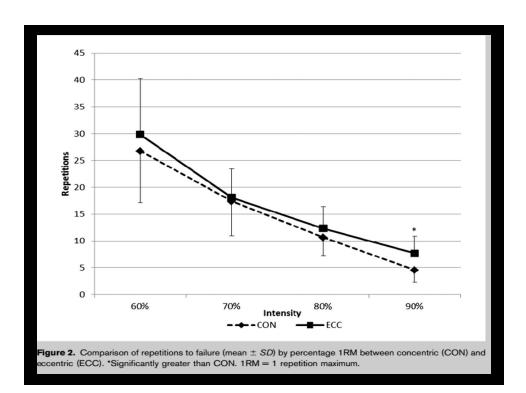



Figure 1. Bench press and crane setup.

	Mean (kg) ± SD	Skewness	SE of skewness	Kurtosis	SE of kurtosis
CON 1RM†	93.56 ± 26.56	1.27	0.427	1.324	0.833
ECC 1RM†	115.99 ± 31.08	0.874	0.427	0.141	0.833
InCON 1RM‡	5.29 ± 0.26	0.715	0.427	0.01	0.833
InECC 1RM‡	5.51 ± 0.26	0.367	0.427	-0.434	0.833

Training, Prevention, and Rehabilitation

Current Sports Medicine Reports

Eccentric Training for the Treatment of Tendinopathies

Bryan Murtaugh, MD and Joseph M. Ihm, MD

Volume 12 • Number 3 • May/June 2013

Treinamento excêntrico para o tratamento de tendinopatias

International Journal of Sports Science 2014, 4(2): 47-49 DOI: 10.5923/j.sports.20140402.02

Acute Effects on Maximal Isometric Force with and without Knee Wrap During Squat Exercise

Willy Andrade Gomes, Érica Paes Serpa, Enrico Gori Soares, Josinaldo Jarbas da Silva, Daniel Corrêa, Fernando Henrique Domingues de Oliveira, Francisco de Abreu Neto, Gustavo Martins, Guanis de Barros Vilela Junior, Paulo Henrique Marchetti^{*}

Department of Human Movement Sciences, Methodist University of Piracicaba, Piracicaba, São Paulo, Brazil

Efeitos agudos sobre a força máxima isométrica com e sem faixa de joelho durante o agachamento

10 indivíduos fisicamente ativos acostumados ao TF

3 ações isométricas máximas em 3 condições

Sem faixa de jeolho

Faixa mais leve

Faixa apertada

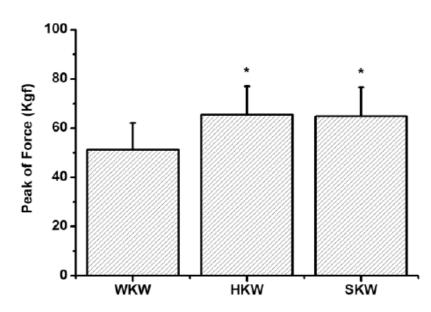
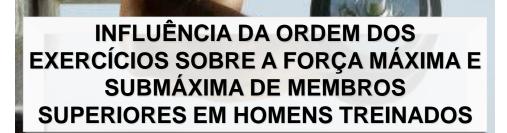
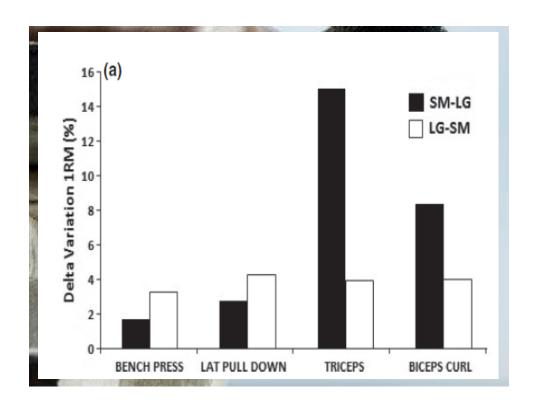
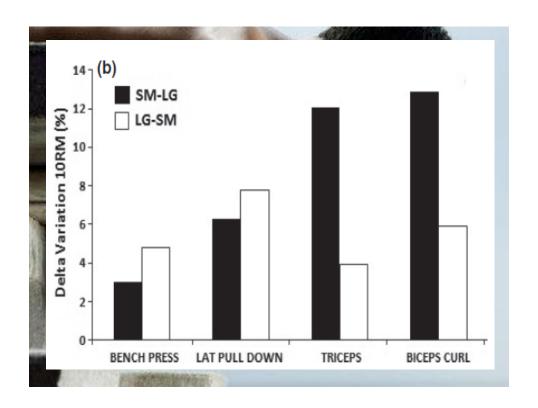


Figure 1. Mean \pm standard deviation of the peak of force during isometric squat for different conditions (without knee wrap, high knee wrap and soft knee wrap, respectively). *P<0.05


Clin Physiol Funct Imaging (2013) 33, pp359-363


doi: 10.1111/cpf.12036


Influence of exercise order on upper body maximum and submaximal strength gains in trained men

Claudio O. Assumpção¹, Ramires A. Tibana², Luan C. Viana², Jeffrey M. Willardson³ and Jonato Prestes²

¹Graduation Program in Human Development and Technologies, Human Performance Laboratory S\u00e4o Paulo State University-UNESP, Rio Claro, SP, Brazil, ²Graduation Program on Physical Education, Catholic University of Brasilia, Brazilia, Brazil and ³Kinesiology and Sports Studies Department, Eastern Illinois University, Charleston, IL, USA

Journal of Sports Sciences, December 2009; 27(14): 1617-1625

Effects of agonist-antagonist complex resistance training on upper body strength and power development

DANIEL W. ROBBINS¹, WARREN B. YOUNG¹, DAVID G. BEHM², & WARREN R. PAYNE¹

EFEITOS DO TF AGONISTA-ANTAGONISTA SOBRE A FORÇA E POTÊNCIA DE MEMBROS SUPERIORES

SEMANAS 1-4										
Week 1 Week 2										
Exercise	Sets	Reps	Load	Rest*	Sets	Reps	Load	Rest*		
Bench pull	4	6	6-RM	4 min	5	5	5-RM	4 min		
Bench press	3	6	6-RM	4 min	4	5	5-RM	4 min		
Bench press throw	1	6	40% 1-RM	4 min	1	5	40% 1-RM	4 min		

^{*}Rest between like sets. RM = repetition maximum.

		Week 3		Week 4				
Sets	Reps	Load	Rest*	Sets	Reps	Load	Rest*	
6	4	4-RM	4 min	6	3	3-RM	4 min	
4	4	4-RM	4 min	4	3	3-RM	4 min	
2	4	40% 1-RM	4 min	2	3	40% 1-RM	4 min	

SEMANAS 5-8

	Week 1			Week 2				
Exercise	Sets	Reps	Load	Rest*	Sets	Reps	Load	Rest*
Bench pull Bench press	4	6 6	6-RM 6-RM	4 min 4 min	5 1	5 5	5-RM 5-RM	4 min 4 min
Bench press throw	3	6	40% 1-RM	4 min	4	5	40% 1-RM	4 min

^{*}Rest between like sets. RM=repetition maximum.

	Week 3		Week 4				
Reps	Load	Rest*	Sets	Reps	Load	Rest*	
4 4 4	4-RM 4-RM 40% 1-RM	4 min 4 min 4 min	6 4 2	3 3	3-RM 3-RM 40% 1-RM	4 min 4 min 4 min	
	4	Reps Load 4 4-RM 4 4-RM	Reps Load Rest* 4 4-RM 4 min 4 4-RM 4 min	Reps Load Rest* Sets 4 4-RM 4 min 6 4 4-RM 4 min 4	Reps Load Rest* Sets Reps 4 4-RM 4 min 6 3 4 4-RM 4 min 4 3	Reps Load Rest* Sets Reps Load 4 4-RM 4 min 6 3 3-RM 4 4-RM 4 min 4 3 3-RM	

			Complex set		
Variable	Pre	Post	Gain	$\%\Delta$	Effect size
Bench pull 1-RM (kg) Bench press 1-RM (kg) BPT height (cm), 4 throws BPT peak velocity (m·s ⁻¹), 4 throws BPT peak power (W), 4 throws	92.1 ± 14.1 100.9 ± 27.8 97.1 ± 18.5 6.8 ± 0.5 3002 ± 898	96.7 ± 15.9 106.0 ± 27.6 99.9 ± 10.3 7.1 ± 0.4 3232 ± 716	$4.5 \pm 3.0^{*}$ $5.1 \pm 3.4^{*}$ 2.7 ± 15.3 0.3 ± 0.4 230 ± 227	$2.2 \pm 1.1 \\ 2.4 \pm 1.8 \\ 5.0 \pm 16.5 \\ 4.2 \pm 6.3 \\ 9.7 \pm 9.2$	0.45 (small) 0.26 (small) 0.21 (small) 0.73 (medium) 0.36 (small)

^{*}Significant difference between pre and post values (P < 0.01).

	Traditional set									
Pre	Post	Gain	$\%\Delta$	Effect size						
$\begin{array}{c} 95.9 \pm 14.1 \\ 94.6 \pm 20.5 \\ 86.8 \pm 17.6 \\ 7.0 \pm 0.5 \\ 3047 \pm 552 \end{array}$	$\begin{array}{c} 98.5 \pm 15.9 \\ 99.1 \pm 20.4 \\ 95.4 \pm 17.5 \\ 7.2 \pm 0.6 \\ 3321 \pm 528 \end{array}$	2.6 ± 3.8 4.5 ± 3.5 8.6 ± 8.8 0.2 ± 0.3 $274 \pm 152*$	$\begin{array}{c} 1.2 \pm 1.7 \\ 2.3 \pm 1.9 \\ 10.8 \pm 10.7 \\ 3.0 \pm 4.0 \\ 9.4 \pm 5.4 \end{array}$	0.26 (small) 0.31 (small) 0.70 (medium) 0.58 (medium) 0.70 (medium)						

		Complex									
Variable	Absolute training gains	Time (h)★	Efficiency								
Bench pull 1-RM (kg)	4.5 ± 2.97	4.53	$1.00 \pm 0.66 \text{ (kg} \cdot \text{h}^{-1}\text{)}$								
Bench press 1-RM (kg)	5.1 ± 3.37	4.53	$1.13 \pm 0.74 \; (\text{kg} \cdot \text{h}^{-1})$								
BPT height (cm)	2.7 ± 15.32	4.53	$0.60 \pm 0.38 \; (\text{cm} \cdot \text{h}^{-1})$								
BPT peak velocity (m·s ⁻¹)	0.3 ± 0.41	4.53	$0.06 \pm 0.09 \; (\text{m} \cdot \text{s}^{-1} \cdot \text{h}^{-1})$								
BPT peak power (W)	230 ± 227	4.53	$50.7 \pm 50.1 \; (\text{W} \cdot \text{h}^{-1})$								
Traditional											

Absolute training gains	Time (h)*	Efficiency	Effect size
2.6 ± 3.80 4.5 ± 3.46 8.6 ± 8.78 0.2 ± 0.30 274 ± 152	10.13 10.13 10.13 10.13 10.13	$0.26 \pm 0.38 \text{ (kg} \cdot \text{h}^{-1}\text{)}$ $0.45 \pm 0.34 \text{ (kg} \cdot \text{h}^{-1}\text{)}$ $0.85 \pm 0.87 \text{ (cm} \cdot \text{h}^{-1}\text{)}$ $0.02 \pm 0.03 \text{ (m} \cdot \text{s}^{-1} \cdot \text{h}^{-1}\text{)}$ $27.1 \pm 15.0 \text{ (W} \cdot \text{h}^{-1}\text{)}$	1.37 (large) 1.18 (large) 0.37 (small) 0.60 (medium) 0.64 (medium)

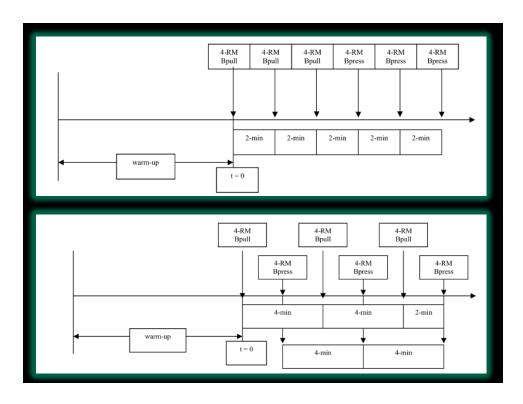
THE EFFECT OF AN UPPER-BODY AGONIST— ANTAGONIST RESISTANCE TRAINING PROTOCOL ON VOLUME LOAD AND EFFICIENCY

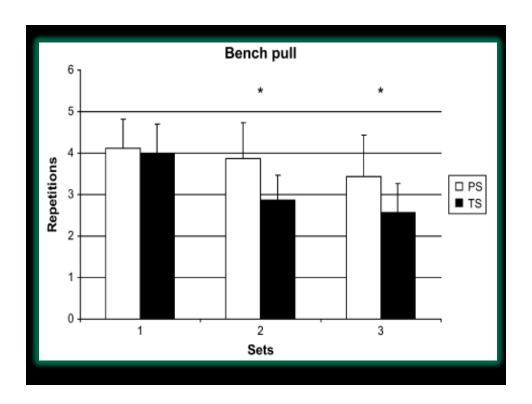
DANIEL W. ROBBINS, WARREN B. YOUNG, AND DAVID G. BEHM³

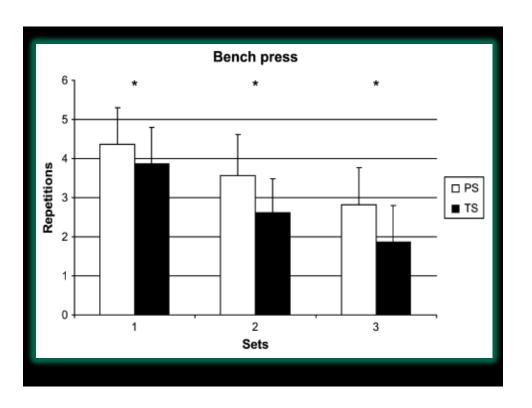
¹School of Physiotherapy, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia; ²School of Human Movement and Sport Sciences, University of Ballarat, Ballarat, Victoria, Australia; and ³School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

J Strength Cond Res 24(x): 000-000, 2010

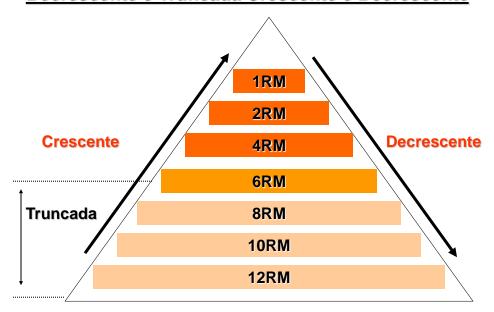
EFEITOS DE UM PROTOCOLO AGONISTA-ANTAGONISTA DE MEMBROS SUPERIORES SOBRE O VOLUME TOTAL E EFICÊNCIA

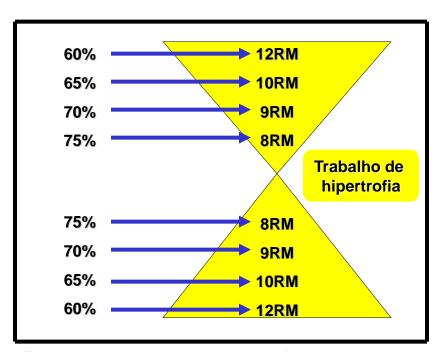


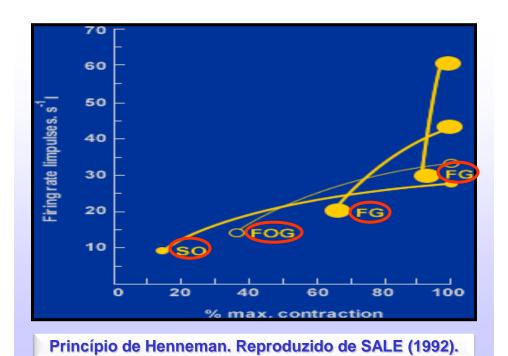

Table 2. Percent changes in VL from set 1 to set 2, set 2 to set 3, and set 1 to set 3 for Bpull and Bpress during PS and TS protocols. (N = 16).*†


	Set 1	-set 2	Set 2	-set 3	Set 1-set 3				
Variable	PS	TS	PS	TS	PS	TS			
Bpull VL Bpress VL		-27.5 (±13.4) -32.9 (±11.9)							

*VL = volume load; Bpull = bench pull; Bpress = bench press; PS = paired set; TS = traditional set. \dagger Values are given as mean% (SD).

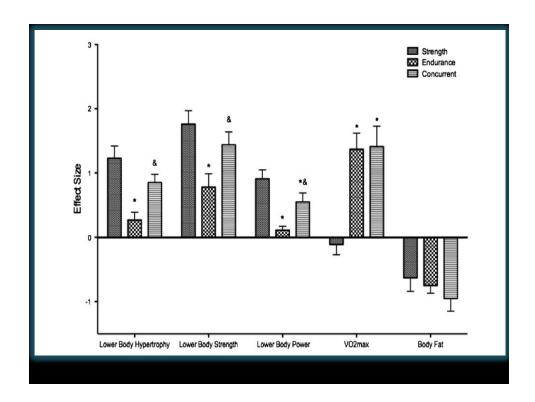

TABLE 4. Efficiency (volume load/time) calculations for session Bpull, VL, and session Bpress VL during PS and TS protocols. (N = 16).*

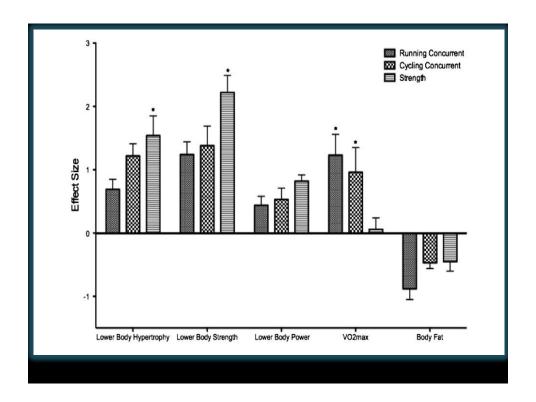

		PS		TS						
Variable	VL	Time	Efficiency	VL	Time	Efficiency				
	(kg)	(min)†	(kg⋅min ⁻¹)	(kg)	(min)†	(kg·min ⁻¹)				
Bpull	895.4	10	89.5	738.1	10	73.8				
Bpress	930.4	10	93.0	731.3	10	73.1				

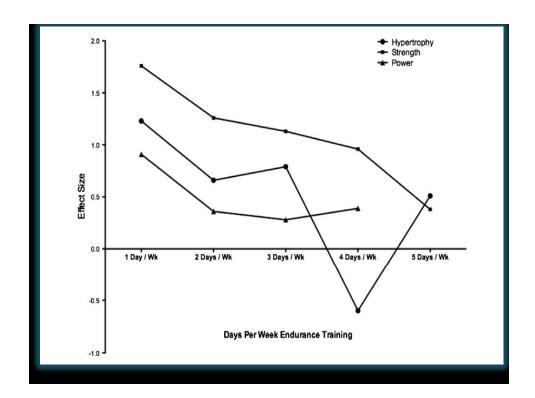


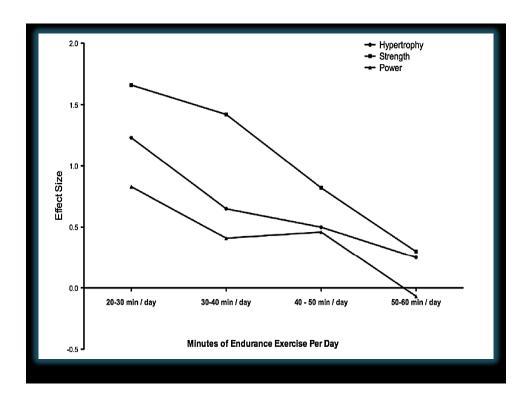
<u>Programa de treinamento Pirâmide Crescente e</u> Decrescente e Truncada Crescente e Decrescente

Padrão de sobrecarga dupla. Reproduzido de Bompa, 2000.


BRIEF REVIEW


CONCURRENT TRAINING: A META-ANALYSIS EXAMINING INTERFERENCE OF AEROBIC AND RESISTANCE EXERCISES


Jacob M. Wilson, Pedro J. Marin, Matthew R. Rhea, Stephanie M.C. Wilson, Jeremy P. Loenneke, And Jody C. Anderson


¹Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida; ²Laboratory of Physiology, European University Miguel de Cervantes, Valladolid, Spain; ³Research Center on Physical Disability, Valladolid, Spain; ⁴Human Movement Program, A. T. Still University, Mesa, Arizona; ⁵Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma

J Strength Cond Res 26(8): 2293-2307, 2012-

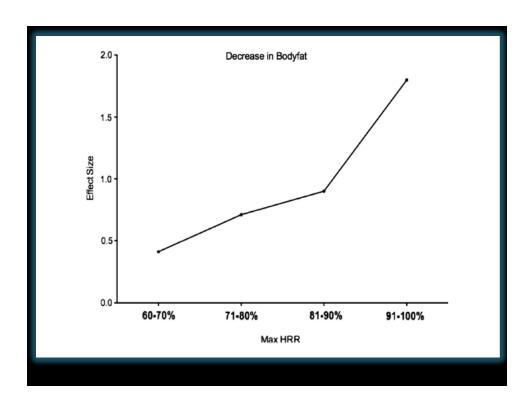


TABELA 29. Exemplo de um macrociclo de 12 meses para hipertrofia muscular com os mesociclos 1, 2, 3 e 4. Os modelos dos mesociclos 3 e 4 podem ser independentes dos mesociclos 1 e 2 e utilizados para indivíduos intermediários e avançados

	MACROCICLO - HIPERTROFIA MUSCULAR																							
MESOCICLO 1 Resistência de força - Hipertrofia								MESOCICLO 2 Hipertrofia																
	JANEIRO FEVEREIRO						MARÇO			ABRIL			MAIO				JUNHO							
MICRO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SÉRIES			1-3	1-3	3-4	3-4	3-4	3-4	3-4	3-4	3-4		3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	
RM	ADP	ADP	12-15	12-15	10-15	10-15	10-15	10-15	10-12	10-12	10-12	R-AV.	8-12	8-12	8-12	8-12	8-10	8-10	8-10	8-10	6-10	6-10	6-10	R-AV.
										M	odelo li	near												

	MACROCICLO – HIPERTROFIA MUSCULAR (continuação)															
MESOCICLO 3 Hipertrofia – Força máxima									MESOCICLO 4 Hipertrofia - Resistência de força - Força máxima							
MESO	O JULHO AGOSTO										SETEMBRO) A DEZEMBRO				
MICRO	25	26	27	28	29	30	31	32			33 a	47			48	
SÉRIES	5x	4x	4x	3x	5x	4x	4x	R-AV.	Segunda Treino A 4x 8-10RM Segunda Treino A 5x 4-6RM	Terça Treino B 4x 8-10RM Terça Treino B 5x 4-6RM	Quarta Treino C 4x 8-10RM Quarta Treino C 5x 4-6RM	Quinta Treino A 3x 12-15RM Quinta Treino A 4x 8-10RM	Sexta Treino B 3x 12-15RM Sexta Treino B 4x 8-10RM	Sábado Treino C 3x 12-15RM Sábado Treino C 4x 8-10RM	R-AV.	
RM	4-6	8-10	10-12	12-15	4-6	8-10	10-12	-	Segunda Treino A 3x 12-15RM	Terça Treino B 3x 12-15RM	Quarta Treino C 3x 12-15RM	Quinta Treino A 5x 4-6RM	Sexta Treino B 5x 4-6RM	Sábado Treino C 5x 4-6RM		
MOD	MOD Linear reversa										Ondul	atório diário				

Prestes, J; Foschini. D. Periodização do TF para academias e treinamento personalizado. In: Prestes, J; Foschini, D; Marchetti, P; Charro, M. Prescrição e Periodização do TF em academias. São Paulo: Manole, 2010.

