AJUSTES CARDIORRESPIRATÓRIOS AO EXERCÍCIO FÍSICO: ASPECTOS CLÍNICOS

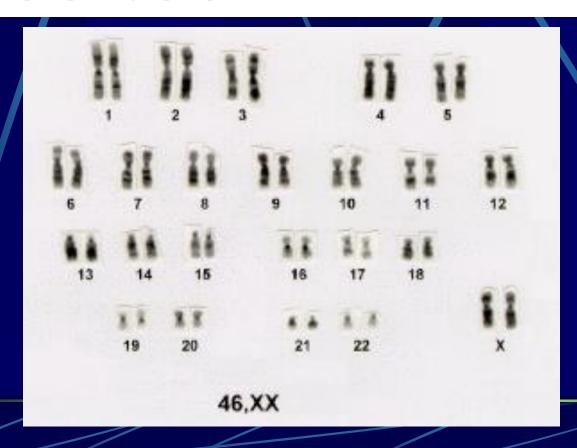
SÉRGIO RODRIGUES MOREIRA

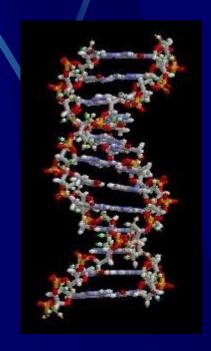
Graduado em Educação Física/FAG/PR
Mestrado em Educação Física/UCB/DF
Doutorado em Educação Física/UCB/DF
Docente Universidade Federal do Vale do São Francisco UNIVASF

Grupo de Estudos do Desempenho Humano e das Respostas Fisiológicas ao Exercício

ABRIL/2016

PROGRAMA:


- Introdução: Fisiologia cardiorrespiratória e sua relação com a saúde e desempenho;
- 2) Estratificação do risco cardiopulmonar;
- 3) Sistema cardiorrespiratório (revisão);
- 4) Análise das variáveis da MAPA;
- 5) Adaptações agudas e crônicas ao exercício físico;
- 6) Prática (Estimativa da Vmáx pelo custo de FC e prescrição do exercício);


7) Avaliação final.

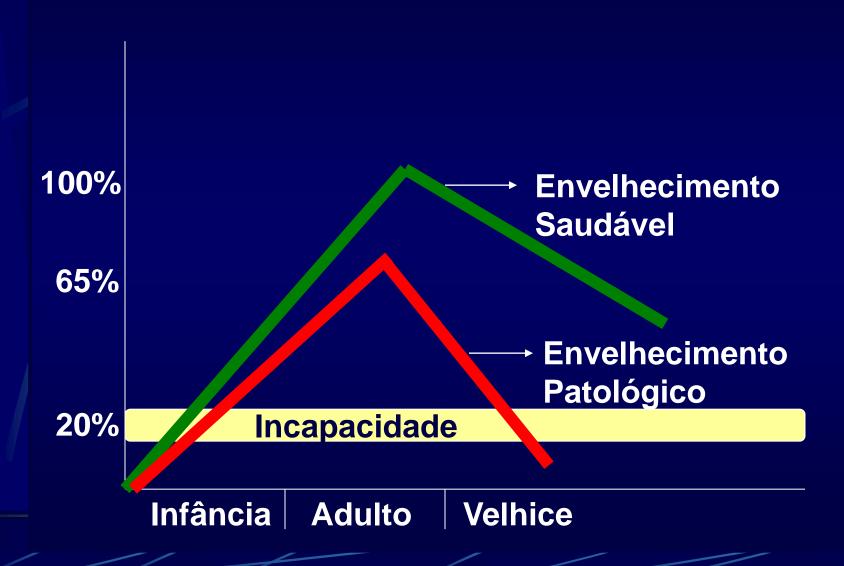
Similarity of polygenic profiles limits the potential for elite human physical performance

Alun G. Williams¹ and Jonathan P. Folland²

²Loughborough University, Loughborough, UK


¹Manchester Metropolitan University, Alsager, UK

Table 1. Probability of perfect genetic profile by number of polymorphisms

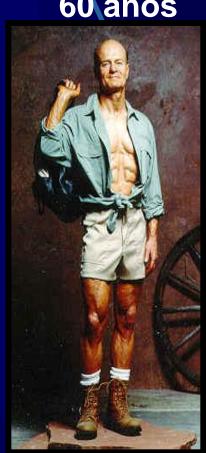

Number of polymorphisms		Typical frequency of optimal genotype (%)		
influencing endurance	New gene included at each stage		Probability of possessing a 'perfect' profile	
performance			% chance	Approximate odds ratio
1	ACE	21	21.0	1:5
2	ACTN3	18	3.78	1:25
3	ADRA2	62	2.34	1:40
4	ADRB2	35	0.82	1:120
5	AMPD1	80	0.66	1 : 150
6	APOE	24	0.16	1:600
7	ATP1A2*	81	0.13	1:800
8	ATP1A2	5	6.4×10^{-3}	1:16 000
9	BDKRB2	15	9.6×10^{-4}	1:100 000
10	CKM	49	4.7×10^{-4}	1:200 000
11	EPAS1*	33	1.5×10^{-4}	1:600 000
12	EPAS1	19	2.9×10^{-5}	1:3 million
13	HFE	4	1.2×10^{-6}	1:85 million
14	HIF1A	77	9.1×10^{-7}	1:110 million
15	HLA-A	2	1.8×10^{-8}	1 : 5.5 billion
16	MT-ND5*	93	1.7×10^{-8}	1:6 billion
17	MT-ND5	7	1.2×10^{-9}	1:85 billion
18	MT-ND5	7	8.3×10^{-11}	1 : 1.2 trillion
19	MT-TT	7	5.8×10^{-12}	1:17 trillion
20	PPARA	70	4.0×10^{-12}	1:25 trillion
21	PPARGC1A	40	1.6×10^{-12}	1 : 62 trillion
22	UCP2	17	2.7×10^{-13}	1:364 trillion
23	VEGFA	30	8.2×10^{-14}	1 : 1212 trillion

There is an exponential decrease in the probability of an individual possessing a 'perfect' genetic profile as the number of polymorphisms included increases. The probability of any given individual possessing a high number of genotypes optimal for endurance performance is extremely slim. *Repeated entries of a gene reflects the inclusion of more than one polymorphism of that gene.

SAUDE

CAPACIDADE FUNCIONAL DURANTE A VIDA

PROCESSO DE ENVELHECIMENTO

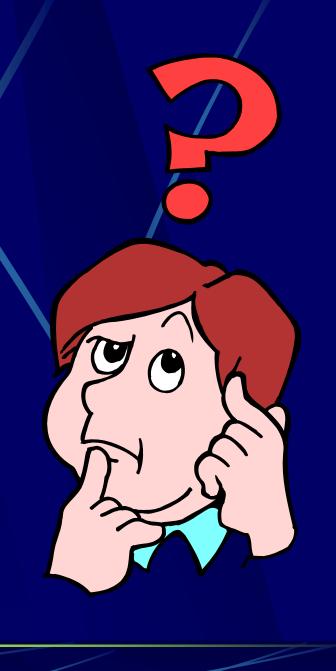


É POSSÍVEL ENVELHECER E MANTER A CAPACIDADE FUNCIONAL...

15 anos

60 anos

65 anos



70 anos

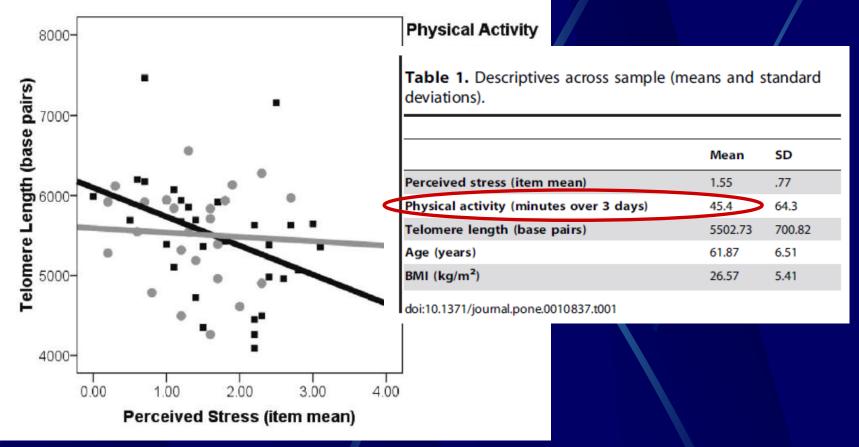
Clarence Bass

Qual o papel do exercício físico para minimizar os impactos do envelhecimento e também de outros fatores de risco associados?

The Power of Exercise: Buffering the Effect of Chronic Stress on Telomere Length

Eli Puterman¹*, Jue Lin², Elizabeth Blackburn², Aoife O'Donovan^{1,3}, Nancy Adler¹, Elissa Epel¹

1 Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America, 2 Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America, 3 Veterans Affairs Medical Center, San Francisco, California, United States of America


Telômeros são complexos DNA-proteína que envolvem as extremidades dos cromossomos. O encurtamento dos telômeros é considerado como um biomarcador do envelhecimento celular.

(Blackburn EH, 1991; Nature 350: 569-573).

METODOLOGIA:

- N = 63 mulheres pós-menopausadas (54-82 anos de idade);
- Amostra sanguínea no jejum (extração de DNA genômico);
- Reação em cadeia de polimerase (PCR quantitativa para análise do comprimento do telômero);
- Escala de estresse percebido (Cohen et al., 1983);
- Nível de atividade física vigoroso por 3 dias consecutivos em minutos, sendo classificados como sedentários (<33 min nos três dias) e ativos (>33 min nos três dias) (Nelson et al., 2007).

Possível mecanismo: Atividade aumentada da telomerase em ativos. Esta enzima adiciona DNA telomérico em telômeros encurtados com o estress, protegendo-os (Greider etal., 1989).

RECOMENDAÇÃO

www.thelancet.com Published online August 16, 2011 DOI:10.1016/S0140-6736(11)60749-6

Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study

Chi Pang Wen*, Jackson Pui Man Wai*, Min Kuang Tsai, Yi Chen Yang, Ting Yuan David Cheng, Meng-Chih Lee, Hui Ting Chan, Chwen Keng Tsao, Shan Pou Tsai, Xifeng Wu

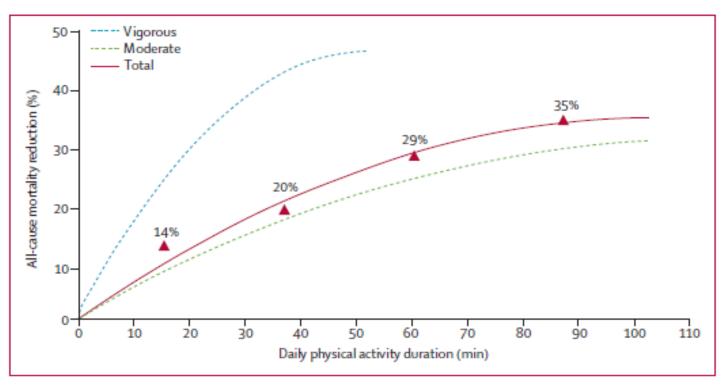


Figure 2: Daily physical activity duration and all-cause mortality reduction

MEDICINE & SCIENCE IN SPORTS

Review

Evidence for prescribing exercise as therapy in chronic disease

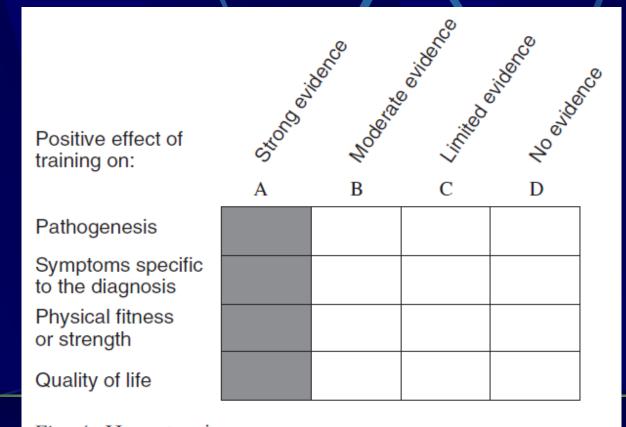


Fig. 4. Hypertension.

Review

Evidence for prescribing exercise as therapy in chronic disease

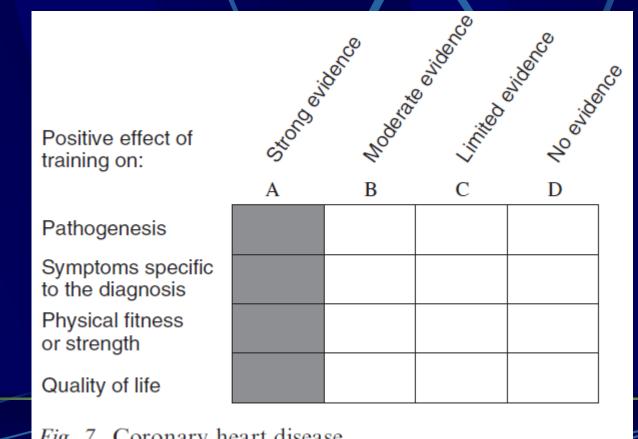


Fig. 7. Coronary heart disease.

Review

Evidence for prescribing exercise as therapy in chronic disease

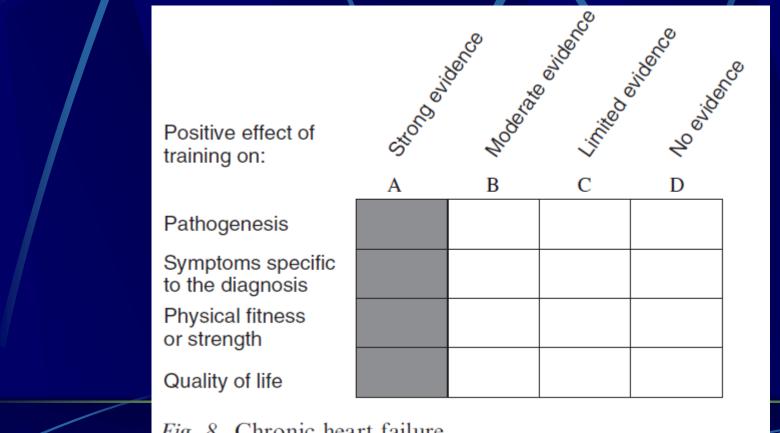
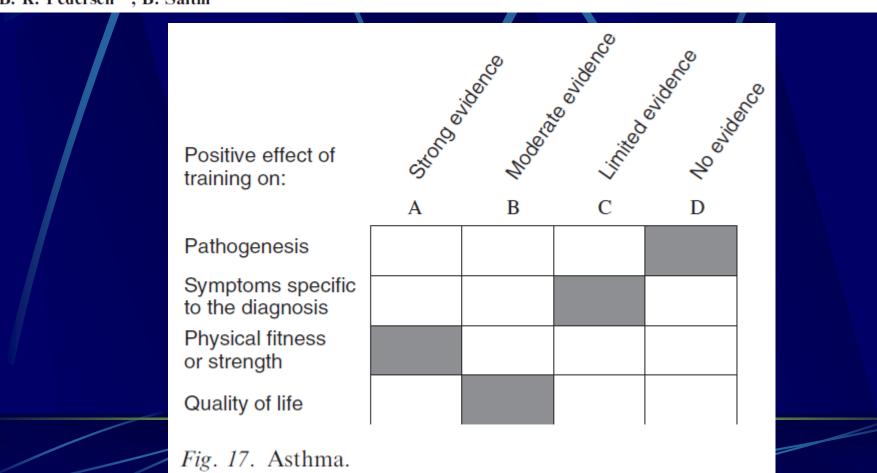



Fig. 8. Chronic heart failure.

Review

Evidence for prescribing exercise as therapy in chronic disease

Review

Evidence for prescribing exercise as therapy in chronic disease

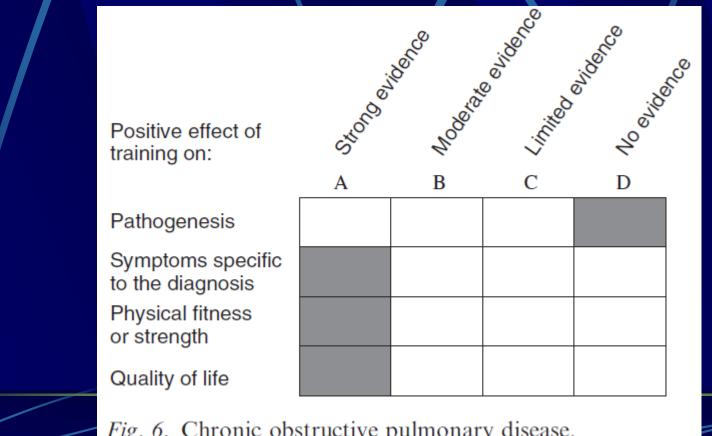


Fig. 6. Chronic obstructive pulmonary disease.

ANTES DE TUDO!!!

"ESTRATIFICAR O RISCO DO PACIENTE"

Triagem em Saúde e Estratificação de Risco

- 1. Questionário para triagem em Saúde;
- 2. Sinais ou sintomas sugestivos de doença cardiopulmonar para estratificação do risco (ACSM, 1995);
- 3. Orientações gerais para o inicio do programa de exercícios.
- Vide capítulos 7 e 8 do livro <u>EXERCÍCIO FISICO E REABILITAÇÃO</u>.

Na estratificação: Sinais, Sintomas e Fatores de Risco

Principais sintomas ou sinais sugestivos de doença cardiopulmonar

- Dor ou desconforto no tórax, pescoço, queixo, braços ou outras áreas que podem ser de natureza isquêmica
- 2. Respiração curta em repouso ou com exercício suave
- 3. Vertigem ou desmaio
- Ortopnéia ou dispnéia noturna paroxistica
- 5. Edema de tornozelo
- 6. Palpitações ou taquicardia
- 7. Claudicação intermitente
- 8. Murmurio cardiaco
- Fadiga incomum ou encurtamento da respiração com atividades

(Adaptado, com permissão, da American College of Sports Medicine, 1995, ACSM's guidelines for exercise testing and prescription, 5.ed. Baltimore: Williams & Wilkins.)

Fatores de risco positivos de doença arterial coronariana,

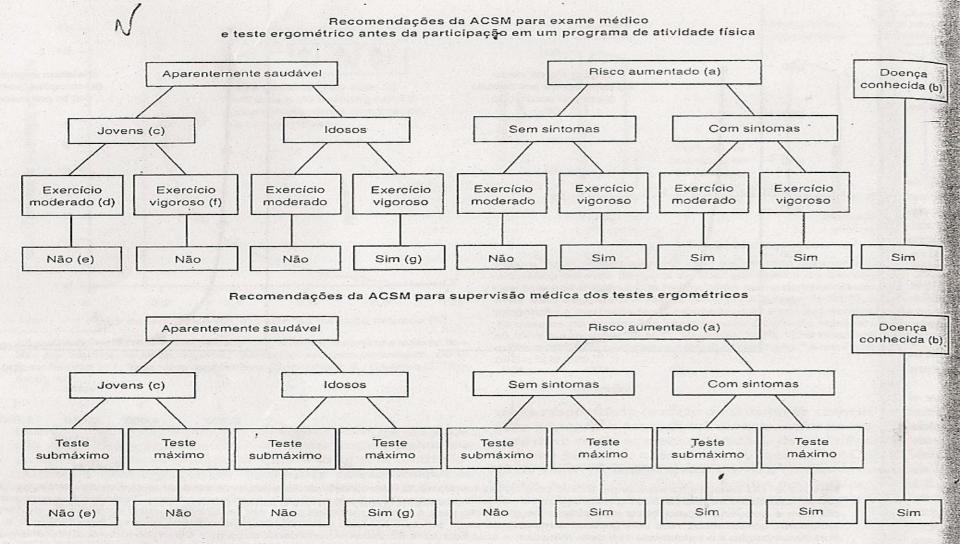
- Idade. Homens: 45 anos; mulheres: 55 anos ou menopausa prematura sem suplementação de estrogênio
- História familiar. Infarto do miocárdio ou morte súbita antes dos 55
 anos do pai ou de outro parente masculino de primeiro grau; ou antes dos 65 anos de idade da mãe ou outro parente do sexo feminino de primeiro grau
- 3. Fumante habitual
- Hipertensão. Pressão sangüínea >140/90 mm Hg, confirmada por medidas em pelo menos duas ocasiões separadas ou sobre medcação anti-hipertensiva
- Hipercolesterolemia. Colesterol total > 200 mg/dl ou HDL < 35 mg/dl
- Diabete melito. Pessoas com diabete melito insulino-dependente (DMID) que têm 30 anos de idade ou tiveram DMID por > 15 anos, pessoas com diabete melito não-insulino-dependente que têm > 35 anos de idade
- Estilo de vida sedentário. Pessoas que compreendem 25% da população menos fisicamente ativa

(Adaptado, com permissão, da American College of Sports Medicine, 1995, ACSMs guidelines for exercise testing and prescription, 5.ed. Baltimore: Williams & Wilkins)

TRÊS CATEGORAIS DE RISCO:

APARENTEMENTE SAUDÁVEL

indivíduo sem nenhum sintoma de doença e não mais que um risco principal de DAC (doença arterial coronariana).


EM RISCO AUMENTADO

Indivíduos que têm sinais ou sintomas sugestivos de doença séria, ou dois ou mais fatores de risco principais para DAC.

COM DOENÇA CONHECIDA

Indivíduos com problemas médicos sérios conhecidos.

- (a) Pessoas com 2 ou mais fatores de risco ou 1 ou mais sinais ou sintomas (ver página 116).
- (b) Pessoas com doença cardíaca, pulmonar ou metabólica conhecida.
- (c) Jovens implica ≤ 40 anos para homens, ≤ 50 anos para mulheres.
- (d) O exercício moderado conforme definido pela intensidade de 40 a 60% do VO₂máx.; se a intensidade é incerta, o exercício moderado pode alternativamente ser definido como uma intensidade dentro da capacidade atual do indivíduo; uma intensidade que pode ser confortavelmente sustentada por um período de tempo prolongado (60 minutos); que tem um início e progressão gradual; e que é geralmente não-competitiva.
- (e) Uma resposta "Não" significa que um item é considerado "não necessário". A resposta "Não" não significa que o item não deve ser feito.
- (f) O exercício vigoroso é definido por uma intensidade de exercício > 60% do VO₂máx.; se a intensidade é incerta, o exercício vigoroso pode alternativamente ser definido como exercício que representa uma mudança cardiorrespiratória substancial ou que resulta em fadiga dentro de 20 minutos.
- (g) Uma resposta "Sim" significa que um item é recomendado. Para supervisão médica, isso sugere que deve haver um médico pronta e rigorosamente disponível em caso de emergência.

Figura 7.1 Fonte: American College of Sports Medicine, 1995.