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Electronic density of states in sequence dependent DNA molecules
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Abstract

We report in this work a numerical study of the electronic density of states (DOS) in p-stacked arrays of DNA single-strand segments
made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin–Shapiro (RS) as well as a Fibonacci
(FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective
inflation rules. Our theoretical method uses Dyson’s equation together with a transfer-matrix treatment, within an electronic tight-bind-
ing Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra
found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remark-
able concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states,
as well as a striking self-similar aspect.
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1. Introduction

In the last decade, there have been dramatic advances
toward the realization of devices and integrated computers
at the molecular scale [1]. One reason for that lies on the
striking advances in molecular biology and nanotechnol-
ogy, which are open up the possibility to explore the inter-
face between biology and electronics at the single-molecule
level [2]. In fact, the use of molecules as electronic compo-
nents is a powerful new direction in the science and tech-
nology of nanometer-scale systems, due to their scientific
and engineering implications [3]. First pioneering experi-
ments were performed demonstrating that individual mol-
ecules can operate as switches one thousand times smaller
than those on conventional microchips [4]. The ultimate
limit would be a device where electrons hop on to and off
from a single atom between two contacts, which has been
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receiving considerable attention recently. Although the ba-
sic process that underlies the function of molecular elec-
tronic devices, i.e., electron transport through molecules
and clusters, is still not well understood, several research
groups are striving to fabricate novel molecular electronic
structures and to develop fundamental insights about their
behavior [5].

Researchers are working to join biology and nanotech-
nology, fusing useful biomolecules, such as chemically syn-
thesize DNA, in arrangements that do everything from
emitting light [6] to storing tiny bits of magnetic data [7].
One of their fundamental goals is the realization of nano-
scale devices in which a few or a single biomolecule can
be used to transfer and process an electronic signal. The
biomolecules have particular functionality that can be
exploited for the implementation of electronic devices [8].
The combination of molecular biology (for engineering
proteins with the desired functional and/or self-assembling
properties) and nanotechnology (for device fabrication)
thus becomes the tool to realize a new class of nano-
electronic elements [9]. Different nanotechnological
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strategies have been selected to implement the biomolecu-
lar devices, following a bottom-up or a top-down approach
depending on the biomolecule and on its functionality [10].

The result is a merger of the biology’s ability to assemble
complex structures with the nanoscientists’ capacity to build
useful devices. One of the biggest drivers behind these tasks
revolves around the nature’s impressive ability to manufac-
ture and assemble complex molecules with great accuracy
and high efficiency using specific biological molecules such
as DNA and proteins, with atomic precision [11]. The real-
ization of complex DNA-based circuits will, however, re-
quire new concepts and additional biological machinery
allowing, for example, feedback from the electronic func-
tionality to direct the assembly process and adaptation
mechanisms. Furthermore, although the use of DNA mole-
cules in nano-electronic circuits is a very promising task due
to their self-assembly and molecular recognition abilities,
their conductivity properties are still under intense and
controversial debate [12].

A DNA chain is a sequence of four possible nucleotides
which define the structure of the amino acids to form pro-
teins. It can be considered as a symbolic sequence of a four
letter alphabet, namely guanine (G), adenine (A), cytosine
(C) and thymine (T). Unlike proteins, a stacked array of
DNA base pairs derived from these nucleotides can provide
the way to promote long-range charge migration, which in
turn gives important clues to mechanisms and biological
functions of transport [13]. Numerous algorithms have
been introduced to characterize and graphically represent
the genetic information stored in the DNA nucleotide se-
quence. The goal of these methods is to generate patterns
for certain sequences or groups of sequences.

With this aim in mind, we report in this work the elec-
tronic density of states of a DNA molecule by using a
tight-binding Hamiltonian, together with a transfer-matrix
within a Dyson’s framework, employed to simplify the alge-
bra which can be otherwise quite involved. We consider a
model in which the DNA molecule is sandwiched in a sub-
strate, following a Fibonacci (FB) and a Rudin–Shapiro
(RS) quasiperiodic structures, and compare them to the
DNA sequence of the first sequenced human chromosome
22 (Ch22), entitled NT011520, whose arrangement was
retrieved from the internet page of the National Center of
Biotechnology Information.

This paper is structured as follows: we present in Section
2 our theoretical model based on an electronic tight-binding
Hamiltonian suitable to describe a single-strand of DNA
segments with pure diagonal correlated disorder modelled
by the quasiperiodic chain of FB and RS type. The numer-
ical results and the conclusions of this work are presented in
Section 3.
2. General theory

For a single-strand DNA chain, our tight-binding
Hamiltonian is written in terms of a localized basis as
H ¼
X

n

xnjnihnj þ
X
n;m

V nmjnihmj; ð1Þ

where xn represents the energy (in units of ⁄) of the site n,
and Vnm is the hopping potential. The sum over m is limited
to the nearest neighbors.

The Dyson equation is

GðxÞ ¼ x�1½I þ HGðxÞ�; ð2Þ

where I is the identity matrix and H is the Hamiltonian
given by (1).

To setup a quasiperiodic chain of Fibonacci type, we
start from a G (guanine) nucleotide as seed and the quasi-
periodic FB sequence can be built through the inflation
rules G! GC and C! G. The initial case that we investi-
gate is for the first generation of the FB sequence, with only
a guanine linked to the substrate. We determine its Green
function by applying the tight-binding Hamiltonian (1) to
the Dyson equation (2) to get

G�1
nn ¼ x� xG þ 2cð1Þ; ð3Þ

where

cð1Þ ¼ � V 2
GS

x� xS þ V SST ðxÞ . ð4Þ

Here, T(x) is the transfer function given by

T ðxÞ ¼ �ð2V SSÞ�1 ðx� xSÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xSÞ2 � 4V 2

SS

q� �
. ð5Þ

Repeating the procedure for any Fibonacci generation,
we observe a difference between the Gnn terms for odd
and even generations, namely,

G�1
nn ¼ x� xG þ cð1Þ þ jðNÞ ð6Þ

for odd generations, while for even generations we have

G�1
nn ¼ x� xG þ cð1Þ þ cðNÞ; ð7Þ

where

jðNÞ ¼ �
V 2

ij

x� xi þ jðN � 1Þ ; ð8Þ

with a similar expression for c(N). Here N is the number of
nucleotides in the strand. The hopping potential Vi,j, with
j = i � 1, can assume two distinct values: VGG and VGC.
Both VGS and VCS represent the interaction of the strand
with the substrate. The symmetry Vi,i�1 = Vi�1,i holds.

The results for the single-stranded Fibonacci sequence
are contrasted with the Rudin–Shapiro (RS) sequence (an-
other substitutional sequence) which displays an absolutely
continuous Fourier measure, a property which it shares
with the random sequences [14]. Starting also from a G
(guanine) nucleotide as seed, the quasiperiodic RS se-
quence is then built through the inflation rules G! GC,
C! GA, A! TC, and T! TA.

In analogy with the FB sequence, we start our study
of the single-stranded DNA chain grown through a RS
sequence by investigating the behavior of the organic
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nanostructured circuit for a single guanine linked to the sub-
strate. Its Green function will be the same as Eq. (3) because
both FB and RS sequences are identical for this generation.
The RS sequence starts to deviate from the FB sequence in
the third generation, when we will have a sequence of four
nucleotides GCGA connected to the substrate. Using a pro-
cedure similar to the quasiperiodic Fibonacci case, we can
get for any even RS generation number the same expression
as for the Fibonacci case (the strand ends with a cytosine
nucleotide C), while for odd generation numbers (ending
with a adenine nucleotide A) the expression is similar to
Eq. (6) provided we replace j(N) by a(N) given by

aðNÞ ¼ �
V 2

i;i�1

x� xi þ aðN � 1Þ . ð9Þ

Differently from the FB sequence, for the Rudin–Shapiro
sequence Vi,i�1 represents four distinct values of hopping
potentials: VCT, VGC, VGA, and VTA (while in FB we only
have two hopping potentials: VGC and VGG), where we have
assumed that Vi,i�1 = Vi�1,i in both cases.
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Fig. 1. Density of state spectra for the Fibonacci Poly GC DNA single-
strand model: (a) even generation numbers corresponding to the 10th
(chain-dotted line), 12th (dashed line), and 14th (full line) FB sequence
generation and (b) odd generation numbers corresponding to the 11th
(chain-dotted line), 13th (dashed line), and 15th (full line) FB sequence
generation.
3. Numerical results and conclusions

We will now discuss the main results found in this work.
The density of state (DOS) for the systems is given by

qðxÞ ¼ �ð1=pÞIm TrhnjGðxÞjni½ �; ð10Þ

where Im means the imaginary part of the argument shown
between brackets. The energies xj are chosen from the ion-
ization potential of the respective nucleotides, i.e., xA =
8.24 eV (adenine), xC = 8.87 eV (cytosine), xG = 7.75 eV
(guanine), and xT = 9.14 eV (thymine) [15–17]. All the
hopping terms Vnm among the bases were taken equal to
1 eV, considering that theoretical calculations using
ab initio methods yield for this potential values in the range
0.4–1 eV [15–17]. The potential at the interface DNA-
substrate (here considered as a platinum electrode) is con-
sidered to be the difference between the Fermi’s level of the
platinum and a HOMO’s (highest occupied molecular orbi-
tal) isolate guanine state, giving us VGS = 2.39 eV. We are
aware that the HOMO state of the guanine may signifi-
cantly change in the presence of the substrate, yielding a
different potential at the interface DNA-substrate.
Although we do not expect any relevant change in the
DOS main features, the actual electron’s localization length
may be influenced, specially at the band edges. The hop-
ping term inside the electrode is 12 eV [18]. Further, the
on-site energy for the substrate (platinum) is xS = 5.36 eV,
which is related with the work function of this metal [19].

Fig. 1 depicts the density of states for a DNA quasiperi-
odic chain following an even (Fig. 1(a)) and odd (Fig. 1(b))
generation of a Fibonacci quasiperiodic sequence, respec-
tively. Here NFB means the sequence generation number,
while nFB corresponds to the number of nucleotides in a
given sequence generation. From there we can infer the
following main properties:
(a) The parity of the FB generation is not important for
the DOS spectrum.

(b) Although the DOS for each generation as a whole
does not show any symmetry, there are two very well
defined and symmetrical regions, lying in the intervals
(in units of eV) 5.75 < x < 9.30 (we call it region I),
and 9.30 < x < 10.30 (region II).

(c) Region II, which appears as a sort of anomaly in the
DOS spectrum, is due to the presence of the cytosine
nucleotide in the quasiperiodic chain. We can also
notice that this region represents a kind of the profile
of the region I inverted and in a smaller scale.

(d) Each region defines a clearly auto-similar spectrum
for different generations. The auto-similarity holds
also for the whole spectrum (regions I + II).
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(e) The central peak for region I is next to the guanine’s
ionization energy xG = 7.75 eV, while the central val-
ley in region II corresponds to xG + 2Vnm = 9.75 eV.

(f) The ratio among the distances of consecutive genera-
tions tends to the gold mean, s ¼ ð1þ

ffiffiffi
5
p
Þ=2, a num-

ber intrinsically linked to the Fibonacci sequence.

The density of states for a DNA quasiperiodic chain fol-
lowing a Rudin–Shapiro quasiperiodic sequence are shown
in Fig. 2(a), for the number of nucleotides nRS = 256, corre-
sponding to the 9th RS sequence generation, and Fig. 2(b),
for nRS = 512, corresponding to the 10th RS sequence gen-
eration. Although some similarities with the Fibonacci case
persist (for instance, the asymmetry of the spectra and the
fact that again the parity of the quasiperiodic generation
is not important), they are completely different, indicating
how important is the model considered to simulate the
DNA structure. As their main features, their central peaks,
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Fig. 2. Density of state spectra for the Rudin–Shapiro (full line) and part
of the human chromosome Ch22 (dashed line) models: (a) nRS = 256,
corresponding to the 9th RS sequence generation and (b) nRS = 512,
corresponding to the 10th RS sequence generation.
which are sequence independent, lie around 6.8 eV (which is
about xC � Vnm), with the band-width approximately given
by xG ± 4Vnm. More important, when one compares these
spectra with those generated from a sequence of natural
DNA, as part of the human chromosome Ch22, with the
same number of nucleotides, a remarkable agreement is
found, as they are depicted in Fig. 2(a) and (b).

To summarize, we have studied the electronic density of
states in one-dimensional DNA single-strand structure
modelled by the quasiperiodic Fibonacci and Rudin–Shap-
iro sequences, aiming to further contribute to the present
understanding of the role played by correlations on the
electronic properties of DNA segments. In order to unre-
veal the actual relevance of long-range correlations, which
is a kind of signature of the quasiperiodic sequences, we
compared the DOS spectra considering segments of the
Ch22 human chromosome with those resulting from the
quasiperiodic Rudin–Shapiro sequence, with a remarkable
agreement. Furthermore, the long-range correlations pres-
ent in Ch22 and RS sequences are responsible for the slow
vanishing of their DOS spectra, which may promote an
effective electronic transport at specific resonant energies
of finite DNA segments. Also, in order to model specific
transport properties of DNA molecules it would be impor-
tant not only to consider their double-strand character [20],
but the different values assumed by the coupling constant
between distinct pairs of nucleotides [21] as well, which in
turn have important consequences in the on-site (ioniza-
tion) energies xj.
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